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Abstract. Propagation of muons through large amounts of
matter is a crucial necessity for analysis of data produced
by muon/neutrino underground experiments. A muon may
sustain hundreds of interactions before it is seen by the ex-
periment. Since a small uncertainty, introduced hundreds of
times may lead to sizable errors, requirements on the preci-
sion of the muon propagation code are very stringent. A new
tool for propagating muon and tau leptons through matter
that is believed to meet these requirements is presented here.
The latest formulae available for the cross sections were used
and the reduction of the calculational errors to a minimum
was our top priority. The tool is a very versatile program
written in an object-oriented language environment (Java). It
supports many different optimization (parametrization) lev-
els. The fully parametrized version is as fast or even faster
than the competition. On the other hand, the slowest version
of the program that does not make use of parametrizations, is
fast enough for many tasks if queuing or SYMPHONY en-
vironments with large number of connected computers are
used. An overview of the program is given and the results of
its application to two muon detectors (AMANDA and Fréjus)
are discussed.

1 Introduction

In order to observe atmospheric and cosmic neutrinos with a
large underground detector (e.g. AMANDA (Andres et al.,
2001)), one needs to isolate their signal from the 3-5 or-
ders of magnitude larger signal from the background of at-
mospheric muons. Methods that do that have been designed
and proven viable (DeYoung, 2001). In order to prove that
the methods work and to derive indirect results such as the
spectral index of atmospheric muons, one needs to compare
data to the results of the computer simulation. Such a simu-
lation normally contains three parts: propagation of the mea-
sured flux of the cosmic particles from the top of the atmo-
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sphere down to the surface of the ground (ice, water); prop-
agation of the atmospheric muons from the surface down to
and through the detector; generation of the Cerenkov pho-
tons emanating from the muon tracks in the vicinity of the
detector and their interaction with the detector components.
The first part is normally calledgenerator, since it gener-
ates muon flux at the ground surface; the second ispropa-
gator; and the third simulates the detector interaction with
the passing muons. Mainly two generators were used so far
(by AMANDA): basiev and CORSIKA (Heck et al., 1998).
Results and method of using CORSIKA as a generator in a
neutrino detector (AMANDA) were discussed in our previ-
ous contribution (Chirkin and Rhode, 1999). Several muon
propagation Monte Carlo programs were used with differ-
ent degrees of success as propagators. Some are not suited
for applications which require the code to propagate muons
in a large energy range (e.g. mudedx), the others are opti-
mized in only some of the interesting energy range (E > 1
TeV, propmu) (Desiati and Rhode, 2001). Most of the pro-
grams use cross section formulae, whose precision has been
improved since their writing. In addition, one would like to
use the code for the propagation of muons that contain 100 -
1000 interactions along their track, so the precision of each
step should be sufficiently high and the computational errors
should accumulate as slowly as possible. Here we present a
new tool (Muon Monte Carlo: MMC), specifically designed
to meet these criteria.

2 Description of the code

The primary design goals of MMC were uncompromising
computational precision and code clarity. It was decided that
the program should be written in JAVA, since JAVA is an
object-oriented programming language (for best code read-
ability) and has consistent behavior across many platforms.
MMC consists of pieces of code (classes), each contained in
a separate file. These pieces fulfill their separate tasks and
are combined in a structured way (Fig. 1). This simplifies
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Fig. 1. MMC structure

code maintenance and introduction of changes/corrections to
the cross section formulae. It is also very straightforward to
even “plug in“ new cross sections, if necessary.

The code evaluates many cross-section integrals, as well as
two tracking integrals. All integral evaluations are done by
the Romberg method of the 5th order (by default) (Numerical
Recipes, 1986) with a variable substitution (mostly log-exp).
If an upper limit of an integral is an unknown (that depends
on a random number), an approximation to that limit is found
during normalization integral evaluation, and then refined by
Newton-Raphson method combined with bisection (Numer-
ical Recipes, 1986).

Originally, the program was designed to be used in the
Massively Parallel Network Computing (SYMPHONY) (Win-
terer, 1999) framework, therefore computational speed was
considered only a secondary issue. However, parametriza-
tion and interpolation routines were implemented for all inte-
grals. These are both polynomial and rational function inter-
polation routines spanned over varying number of points (5
by default) (Numerical Recipes, 1986). Inverse interpolation
is implemented for root finding (i.e. whenx(f) is interpo-
lated to solvef(x) = y). Two dimensional interpolations are
implemented as two consecutive one-dimensional ones. It is
possible to turn parametrizations on or off for each integral
separately at program initialization. With full optimization
(parametrizations) this code is at least as fast or even faster
than the competition.

Generally, as a muon travels through matter, it loses en-
ergy due to ionization losses, bremsstrahlung, photo-nuclear
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Fig. 2. breaking a large step into small

interaction and pair production. Formulae for the cross sec-
tions were taken from the recent contribution (Rhode and
Cârloganu, 1999). These formulae are claimed to be valid
to within about 1%. All of the energy losses have continuous
and stochastic components, the division between which is su-
perficial and is chosen in the program by selecting an energy
cut (ecut) or a relative energy loss cut (vcut). Ideally, all
losses should be treated stochastically. However, that would
bring the number of separate energy loss events to infinity,
since the probability of such events to occur diverges loga-
rithmically for the ionization losses, as the lost energy ap-
proaches zero, and as1/Elost for all others. A good choice
of vcut should lie in the range (10−4 - 10−1) (Bugaev et al.,
2000).

Let the continuous part of the energy losses (energy losses,
integrated from zero toecut) be described by a function f(E):

−dE
dx

= f(E).

The stochastic part of the losses is described by a function
σ(E), which is a probability for any energy loss event (with
lost energy> ecut) to occur along a path of 1 cm. Consider
the particle path from one interaction to the next consisting
of small intervals (Fig. 2). On each of these small intervals
probability of interaction isdP (E(xi)) = σ(E(xi))dx. It is
now easy to derive an expression for the final energy on this
step as a function of the random numberξ. Probability to
completely avoid stochastic processes on an interval (xi;xf )
and then suffer a catastrophic loss ondx atxf is

(1− dP (E(xi))) · ... · (1− dP (E(xf ))) · dP (E(xf ))

= exp(−dP (E(xi))) · ... · exp(−dP (E(xf ))) · dP (E(xf ))

= exp

(
−
∫ Ef

Ei

dP (E(x))

)
· dP (E(xf ))

= df

(
− exp(−

∫ Ef

Ei

σ(E)
−f(E)

· dE)

)
= d(−ξ), ξ ∈ (0; 1]

To find the final energy on each step the above equation is
solved forEf :∫ Ef

Ei

σ(E)
−f(E)

· dE = − log(ξ) (energy integral),

and then the corresponding displacement is found:

xf = xi −
∫ Ef

Ei

dE

f(E)
(tracking integral).
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Fig. 3. from left to right, top to bottom: 1. ioniz (upper solid curve), brems (dashed), photo (dotted), epair (dashed-dotted) and decay (lower
solid curve) losses; 2. Interpolation precision(epa − enp)/epa; 3. Distribution of the final energy of the muons that crossed 300 m of Fréjus
Rock with initial energy 100 TeV; 4. Fit to the energy losses in ice and 5.χ2 plot; 6. Fit to the stochastic energy losses in ice

3 Errors

All cross-section integrals are evaluated to the relative pre-
cision of10−6, the tracking integrals are functions of these,
so their precision was set to a smaller value of10−4. To
check the precision of interpolation routines, results of run-
ning with parametrizations enabled were compared to those
with parametrizations disabled. The first plot in Fig. 3 shows
relative energy losses due to different mechanisms. Decay
energy loss is shown here only for comparison and is eval-
uated by multiplying the probability of decay by the energy
of the particle. In the region below 10 GeV pair production
cross section is set to zero. Since on the four parametriza-
tion grid points located right below 10 GeV interpolation
routines give non-zero values, whereas the exact values are
zero, relative error of parametrized vs. non-parametrized
runs ((epa − enp)/epa) is equal to 1. But since the value
of pair production energy loss in this region is small in com-
parison to the sum (mostly ionization energy loss), this big
relative error results in a much smaller increase of the relative
error of the total energy losses (the second plot). Because of
that, parametrization errors never exceed10−4 - 10−3, as one
can estimate from the plot. These errors are much smaller
than the uncertainties in the formulae for the cross sections.

Moreover, from the discussion above it is clear that it is due
these uncertainties (and artificial cutoffs) that the errors of
parametrization may get as high as10−3. Now the ques-
tion arises whether this precision is sufficient to propagate
muons with hundreds of interactions along their way. The
third plot is one of the examples that demonstrate that it is
sufficient: the final energy distribution did not change after
enabling parametrizations.

4 Results

The code was incorporated into the Monte Carlo chains of at
least two different detectors: Fréjus (Schr̈oder et al., 2001)
and AMANDA (Desiati and Rhode, 2001). In this section
some general results are presented.

The energy losses plot was fitted to the functiondE/dx =
a + bE (Fig. 3, fourth plot). In order to choose low and
high energy limits correctly (to cover the maximum possi-
ble range of energies that could be comfortably fitted with
a line), aχ2 plot was generated and analysed (Fig. 3, fifth
plot). It can be seen thatχ2 plot at the low energies goes
down sharply, then levels out. This corresponds to the point
where linear approximation starts to work. At high energies
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χ2 rises monotonically. This means that a linear approxima-
tion, though valid, has to describe a growing energy range.
An interval of energies from 20 GeV to1011 GeV is chosen
for the fit. The following table summarizes the found fits to
a and b:

medium a, GeVmwe b, 10−3

mwe av. dev. max. dev.

ice 0.25958 0.35709 3.7% 6.6%
fr. rock 0.23131 0.42927 3.0% 5.1%

The errors in the evaluation of a and b are in the last digit of
the given number. However, if the lower energy boundary of
the fitted region is raised and/or the upper energy boundary
is lowered, each by an order of magnitude, a and b change by
about 1%.

To investigate the effect of stochastic processes, muons
with energies 120 MeV -1011 GeV were propagated to the
point of their disappearance. Average final distance (range)
for each energy was fitted to the solution of the energy loss
equationdE/dx = a+ bE:

xf = log(1 + Ei · b/a)/b

(Fig. 3, sixth plot). The same analysis of theχ2 plot as above
was done in this case. A region of initial energies from 40
GeV to108 GeV was chosen for the fit. The following table
summarizes the results of these fits:

medium a, GeVmwe b, 10−3

mwe av. dev.

ice 0.2489 0.4155 2.4%
fréjus rock 0.2209 0.5051 2.4%

As the energy of the muon increases, it suffers more inter-
actions before it is lost and the range distribution becomes
more Gaussian-like (Fig. 4). It is obvious that the inclusion
of stochastic processes into consideration leads in general to
larger energy losses than with only continuous processes and
the center of gravity of the muon beam travels to a smaller
distance.

5 Conclusions

A very versatile, clear-coded and easy-to-use Muon propaga-
tion Monte Carlo program (MMC) is presented. It is capable
of propagating muon and tau leptons of energies from 120
MeV (just above the muon rest mass, higher for taus) to1011

GeV, which should be sufficient for the use as propagator
in the simulations of the modern neutrino detectors. A very
straightforward error control model is implemented, which
results in computational errors being much smaller than un-
certainties in the formulae used for evaluation of cross sec-
tions. It should be very easy to “plug in” cross sections,
modify them, or test their performance. The program was
extended on many occasions to include newly introduced for-
mulae or effects. Even though it does not change the direc-
tion of the propagated particle (as of the moment of writing),
MMC is “3d-ready”, since it does all calculations and checks

Fig. 4. Final distance distributions: on all plots solid line designates
the value of the final energy evaluated with the first table (continu-
ous losses only) and the broken line shows the final energy evaluated
with the second table (continuous and stochastic losses).

in three dimensions. The correct angular dependence of the
cross sections will be inserted at a later date, when necessary.

The MMC program has already been successfully incorpo-
rated into and used in the Monte Carlo chains of AMANDA
and Fŕejus. We hope that the combination of precision, code
clarity, speed and stability will make this program a use-
ful tool in the research connected with high energy particles
propagating through matter.

Also, a calculation of coefficients in the energy loss for-
mula dE/dx = a + bE is presented for both continuous
and full (continuous and stochastic) energy loss treatments.
The calculated coefficients apply in the energy range from 20
GeV to1011 GeV with an average deviation from the linear
formula of 3.7% and maximum of 6.6%.
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