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3-D anisotropies of galactic cosmic rays: Theoretical modeling
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Abstract. We report on 3-dimensional model calculations
on the anisotropies of galactic cosmic rays that appear as
solar and sidereal daily waves in earth based observations.
Both the ecliptic and the sector-dependent North-South com-
ponents of the anisotropy are considered. Particular attention
is paid to the N-S component which is widely used to infer
radial gradients and which cannot be properly addressed in
2-D models. We illustrate that the cross-field streaming due
to latitudinal gradients may be considerable and the simple
picture based solely on theB ×∇U streaming may, in some
instances, be misleading in inferring the radial gradient. We
present 3-D simulations assuming different field models. The
concept of upper limiting cutoff rigidity will be addressed.
At high rigidities the diffusive description becomes inappli-
cable. An extension of numerical modeling is proposed for
the regime of upper limiting cutoff.

1 Introduction

The transport theory of cosmic rays in the heliosphere (Par-
ker, 1965, 1967; Axford, 1965) is based on the concept of
diffusive streaming. The connection between the density gra-
dient,gj , and the diffusive streaming induced is established
by the anisotropic tensor,κij , containing three components:

κij = κ⊥δij + (κ‖ − κ⊥)bibj + κA εijk bk (1)

wherebi is the unit vector pointing along the magnetic field,
andεijk stands for the completely antisymmetric unit tensor.

Inverting the diffusive relation, observed anisotropies may
be utilized to infer the gradients, and estimate the diffusion
coefficients. The most robust of the anisotropies are the co-
rotational anisotropy lying in the ecliptic plane and the so
calledB × ∇U anisotropy, i.e. the sector-dependent north-
south (N-S) anisotropyξNS , normal to the ecliptic plane.
ξNS changes direction as the Earth moves from one polar-
ity sector to the other. The particular significance ofξNS
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is that it can be employed to obtain a direct estimate on the
radial gradient of galactic cosmic rays (GCR) (Bercovitch,
1970; Swinson, 1971). Ahluwalia (1994) made efforts to de-
termine other components of the gradient from the observed
ecliptic anisotropy components,ξr andξa. A sophisticated
analysis based on all three components ofξ has been carried
out by Bieber and Chen (1971). Recently Belov and Oleneva
(1997) inferred gradients from the N-S anisotropy.

Theoretical cosmic-ray transport models should explain
the anisotropies as well. The ecliptic component has a well
established 22-year variation. In theA > 0 cycles, when
the large scale heliospheric magnetic field (HMF) points out-
ward on the northern hemisphere (i.e. the years of seventies
and nineties), the corotational anisotropy shifts from its 18 hr
phase to earlier hours (Forbush, 1969; Mori, 1975; Bieber
and Chen, 1991; Bieber and Evenson, 1997; Munakata et
al., 1997). This can be understood as a natural result of
particle drifts and implies a radial gradient that cannot fully
balance the outward convection. Numerical models includ-
ing drift reproduce, at least qualitatively, this feature (Potgi-
eter and Moraal, 1985; Ḱota and Jokipii, 1985; Ḱota, 1999).
The sector-dependent N-S anisotropy, on the other, is an in-
herently a 3-dimensional phenomenon, connected with the
waviness of the tilted heliospheric current sheet (HCS) that
cannot be properly addressed in 2-D models (Kóta, 1999).

In the present work, we extend our 3-D code, including a
wavy HCS and corotating interaction regions (CIRs) (Kóta
and Jokipii, 1991) to calculate anisotropies. We consider the
5-25 GV range, where the relative energy loss of GCR is al-
ready small, but the diffusive approximation is still valid. At
higher rigidities the diffusive description breaks down. It is
not clear how the transition occurs; an ad-hoc upper limit-
ing rigidity is commonly introduced (e.g. Bieber and Chen,
1991). Some aspects of the transition regime has been con-
sidered by Erd̋os and Ḱota (1980). In the range of the upper
cutoff rigidity, we have to consider a new approach that in-
cludes scattering but does not rely on the concept of diffusive
streaming and by Ḱota (1999).
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Fig. 1. Harmonic dials for the ecliptic anisotropy components obtained in a 2-D simulation for the two polarity states. The ratios of diffusion
coefficients areκ‖ : κA : κ⊥ = 1 : 0.04 : 0.02 on the left panel (a) and1 : 0.06 : 0.01 on the right panel (b). Note the shift toward earlier
hours forA > 0 (dashed line).

2 2-D Model Simulations

From the point of anisotropies, only the ratios of the diffusion
coefficients,κ‖, κ⊥, andκA are important. A uniform in-
crease of all three coefficients would result in proportionally
smaller gradients, but anisotropies would remain the same.
There are two widely used assumptions based on physical
considerations. First, the anti-symmetric component is ex-
pected to beκA ≈ vρ/3 whereρ is the particle gyro-radius in
the given position in the HMF. Second, a frequently adopted
approach is the so-called billiard-ball scattering, assuming
that particle motion can be described as regular spiral mo-
tion with random andisotropicscattering. This leads to the
relation (Forman and Gleeson, 1975)

(κ‖ − κ⊥)κ⊥ = κA
2. (2)

The billiard ball model deserves special attention. While
the term ‘billiard-ball’ might suggest large-angle scattering,
the only important assumption is that scattering is isotropic,
small angle scattering leads to the same conclusion (Kóta,
1999). It is easy to see that, in a symmetric 2-D model,
billiard-ball scattering cannot produce finite azimuthal aniso-
tropy, ξa, near the HCS. To obtain co-rotational anisotropy
one requires aκ⊥ that considerably exceeds the billiard-ball
value (Kóta, 1999).

Figure 1 shows the ecliptic anisotropies,ξr and ξa ob-
tained in a 2-D model, assuming a flat HCS and a uniform
400 km/s solar wind speed, for two sets of parameters. All
three coefficients,κ‖, κ⊥, andκA were taken to scale in-
versely proportional to the magnetic field strength. The left
panel shows results obtained withκA/κ‖ = 0.04 andκ⊥ =
0.02κ‖, implying thatκ⊥ is significantly larger than the value
that would be obtained form a billiard-ball scattering. The
predicted anisotropies clearly demonstrate the phase-shift to

earlier hours in theA > 0 cycle. The right panel shows
results obtained withκA/κ‖ = 0.06 andκ⊥/κ‖ = 0.01,
which are closer to the billiard-ball scattering. The predicted
anisotropy decreases forA < 0 and almost completely dis-
appears forA > 0.

We find that a 2-D model can qualitatively reproduce the
observed shift of the ecliptic anisotropy ifQ = κ‖κ⊥/(κA2+
κ2
⊥)� 1. A set of ‘billiard ball ratios’ (Q = 1), would give
ξa = 0 near the HCS, and very little anisotropies away from
the HCS.

The N-S anisotropy cannot be properly addressed in a 2-
D model; assuming a flat sheet and N-S symmetry does not
permit anyξNS at the current sheet. Moreover, away from
the HCS, 2-D models would predict equatorward streaming
for A > 0, which is contrary to expectations fromB × ∇U
(Kóta, 1999).

3 3-D Tilted Dipole Model

First we consider a tilted dipole model containing a wavy
HCS and a uniform solar wind speed at 400 km/s, i.e. without
including CIRs. Figure 2 shows simulation results obtained
for 5 GV cosmic rays with parameters similar to those used
in our simulation of cosmic-ray transport (Kóta and Jokipii,
1991; 1998). We takeκA = vρ/3, κ‖ = 25κA, κ⊥ =
0.02κ‖, and a tilt ange of 30o. Our model assumes quasi-
steady conditions in the frame co-rotating with the Sun. As
the Sun rotates, the Earth’s position changes with respect to
the HCS leading to recurrent 27-day variations in the aniso-
tropies and local gradients. Azimuthal gradient produce 27-
day intensity waves (∆J/J in the lower left panel).

Figure 2 indicates some variability in the anisotropies and
spatial gradients during a solar rotation. The spikes at sector-
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Fig. 2. Anisotropies (upper panels) and gradients (lower panels) at the orbit of Earth as obtained for 5 GeV GCRs in a 3-D simulation with
a wavy HCS (α = 30o), but without CIRs, forA < 0 (solid lines) andA > 0 (dashed lines) in a 27-day rotational period. Vertical dotted
lines indicate sector crossing. The lower-left panel shows the predicted recurrent 27-day intensity variations due to azimuthal gradients.

crossing may be artifacts. The ecliptic components show the
characteristic phase shift in theA > 0 cycle. The radial
gradient turns out smaller forA > 0. The recurrent 27-day
(in fact 13.5 day) variation shows intensity maxima at sector
crossing and minima away from the HCS for both polarities.

Latitudinal gradients point northward in the positive and
southward in the negative sectors in accord with the direction
of theB ×V electric field. By contrast with the 2-D simu-
lation, a finite sector dependentξNS anisotropy arises.ξNS
does not, however, strictly follow the sectors. ForA > 0,
cross-field diffusion due to the large latitudinal gradient hap-
pens not only to balance but even to overcompensate the
B × ∇U streaming. For this particular set of parameters,
the sector dependentξNS could not be reliably used to infer
the radial gradient.

4 3-D Quadrupole Model

The tilted dipole model describes the quiet heliosphere. The
HCS extends to high latitudes and the quadrupole moments
of the field increase as the Sun enters a more active phase.
This results in a 4-sector configuration. In this section we
report on model simulations with a field resembling that ob-
served at high solar activity.

Figure 3 shows how the predicted ecliptic anisotropies do
change when more complex configurations are considered.
Panel (a) displays the harmonic dial for the average aniso-
tropies obtained for the tilted dipole model. The phase shifts
toward earlier hours forA > 0. Panel (b) shows model simu-
lations using the same diffusion coefficients, and uniform so-
lar wind speed as previously, but assuming a 4-sector HMF,
by adding a significant quadrupole component to the solar
magnetic field. The resulting HCS extends to latitudes as
high as 60o (for details see Ḱota and Jokipii, this volume).
Inspection of Figure 3 shows that, while the sense of the
differences remain similar, the anisotropies predicted for the
two different cycles move closer to each other as the HCS
becomes more complex.

Panel (c) illustrates the predicted anisotropies when, in
addition to the 4-sector quadrupole field, CIRs are also in-
cluded. The same parameters are used as previously, but the
solar wind speed at the Sun is assumed to vary from 350 km/s
around the current sheet to 550 km/s at high speed coronal
holes. Our code calculates the radial and time evolution of
the HCS and CIR structure (Ḱota and Jokipii, 1991), which
serves then as a background for the transport of GCR. The re-
sulting ecliptic anisotropies remain similar to those obtained
without CIRs (panel b), but predictions for the two polarity
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Fig. 3. Ecliptic anisotropy components obtained forA < 0 (-) andA > 0 (+) cycles for models: (a) tilted dipole model withα = 30o (b)
quadrupole field added (c) quadrupole field plus CIRs added (see text). Note the diminishing phase difference.

states become even closer.
The predicted north-south anisotropy,ξNS , does also un-

dergoe a remarkable change as we consider more and more
complex HMF. In all of our 3-D simulations,ξNS showed
considerable azimuthal variations as the phase of observer
changed with respect to the HCS, and also due to azimuthal
variation in the solar wind speed and magnetic field (when
CIRs were included).

Comparing averages over respective sectors, we found that
ξNS cannot be used to obtain the average radial gradient for
the highly organized tilted dipole model. On the other hand,
the B × ∇U method becomes better for the less organized
4-sector configuration. We find that the direct application
of this method tends to underestimate the radial gradient by
a factor of 2 for the 4-sector model without CIRs and it be-
comes quite accurate (within 10 %) for the quadrupole model
including CIRs. The reason is that the sector-averaged lati-
tudinal gradient, which is substantial in the highly organized
dipole field (seegNS in the lower right panel of Figure 2)
becomes small in the less organized quadrupole field.

5 Conclusions

We have extended our 3-D cosmic-ray transport code to study
anisotropies in 2-D and 3-D simulations. We reported on
preliminary results in the 5-25 GeV range. Computational
refinements are still required and are in progress. The ob-
served phase shift of the ecliptic component is qualitatively
reproduced in 2-D and 3-D models for a wide range of pa-
rameters. We find thatκ⊥ needs to be substantially larger
than what would be obtained from a ‘billiard-ball’ scattering.

The sector-dependent north-south anisotropy represents a
more subtle problem. Our preliminary results suggest that
the straightforward application of the standardB×∇U pro-
cedure (Bercovitch, 1970) may be overly simplified and may
give inaccurate results for the radial gradient for conditions
of the quiet heliosphere (i.e. well organized tilted dipole).
The method is applicable if the HMF is less organized. This

requires further work.
The diffusive description of cosmic ray transport breaks

down in the range of the upper limiting rigidity where helio-
spheric effects cease. Theoretical modeling of the regime of
the upper cutoff requires a new approach that includes scat-
tering, but does not introduce a diffusive streaming. We are
developing such a numerical code based on previous theoret-
ical studies (Ḱota, 1999). We anticipate to present prelimi-
nary results at the Conference.
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Kóta, J. and Jokipii, J. R.,Space Sci. Rev, 83, 137, 1998.
Munakata, K., Miyasaka, H., Hall, D. L., Yasue, S., Kato, C., Fujii,

Z., Fujimoto, K., and Sakakibara, S.,Proc. 25th Int. Cosmic Ray
Conf., 2, 77, 1997.

Mori, S.,Proc. 14th Int. Cosmic Ray Conf., 4, 1209, 1975.
Parker, E. N.,Planet. Space Sci., 13, 9, 1965.
Parker, E. N.,Planet. Space Sci., 15, 1723, 1967.
Potgieter, M. S. and Moraal, H.,Astrophys. J., 294, 425, 1985.
Swinson, D. B.,J. Geophys. Res., 76, 4217, 1971.


