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Abstract. We discuss the potential role the meridional com-
ponent of the large-scale heliospheric magnetic field (HMF)
might play in the transport of cosmic rays. The standard Ar-
chimedean spiral lines of the steady, large-scale HMF has no
latitudinal component. Hence latitudinal transport of parti-
cles may occur only through particle drifts and cross-field
diffusion. Most of the numerical works developed so far
were built on and taking advantage of this presumption. Al-
though the inclusion of an additional meridional field com-
ponent is simple conceptually it still poses serious challenges
to numerical models. The present work considers examples
where organized latitudinal field is present. We address the
Fisk field as the prime target of the present work. Also dis-
cussed are the meridional fields that inescapably emerge in
connection with the reorganization of the global HMF as the
tilt angle of the heliospheric current sheet (HCS) changes.
Analytical approximations and numerical simulations are at-
tempted. The presence of a small organized latitudinal field
is important if cross-field diffusion (κ⊥) is small. We present
the results of a numerical code custom-designed for this spe-
cific purpose optimized for smallκ⊥.

1 Introduction

The first polar pass of Ulysses brought a number a remark-
able discoveries. The most surprising of these arguably was
the continued presence of recurrent 26-day variations in par-
ticle fluxes at both high and low energies. Recurrent MeV ion
and 100 keV electron events (Sanderson et al., 1995; Simnett
et al., 1995) were observed as well as recurrent depressions in
the GeV cosmic ray flux (Simpson et al, 1995) at the highest
latitudes reached by Ulysses, in a region where correspond-
ing variation in the solar wind and magnetic field were no
longer present.

The Ulysses observations, which imply an effective parti-
cle transport between low and high latitudes, prompted Fisk
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(1996) to re-investigate the structure of magnetic field lines
in the large-scale heliospheric magnetic field (HMF). Fisk
(1996) pointed out that the differential rotation in the photo-
sphere and the non-radial expansion close to the Sun lead to
an organized excursion of the footpoints of HMF lines which,
in turn, results in an organized latitudinal motion of the field
lines. This establishes anorganizedand causalmagnetic
connection between high and low latitudes. An alternative
picture (Kóta and Jokipii, 1995, 1998) interprets the latitudi-
nal transport as the result of perpendicular diffusion, primar-
ily due to the random walk of field lines. The two mecha-
nisms are not mutually exclusive, they may be at work at the
same (Fisk and Jokipii, 1999).

Cosmic-ray transport in a Fisk type field is inherently 3-
dimensional and poses serious challenges for both analytical
and numerical models. Some aspects of modulation in a Fisk
field have been discussed by Kóta and Jokipii (1995, 1997).
The major problem for numerical simulations is that, speak-
ing in technical terms, the presence of the very complex lat-
itudinal field component introduces new mixed derivatives
in the transport equation. Not only do these terms demand
extra computing efforts but they also render the numerical
schemes less stable. An additional technical difficulty is that
field lines at the poles are in general not aligned to the radial
direction thus the use of polar coordinates becomes problem-
atic at best.

Studying the Fisk-field must call our attention to the po-
tential role a regularBϑ component may play in general. For
instance, almost any time variation in the large-scale field
leads to aBϑ component. The inclusion ofBϑ is inescapable
when addressing time-dependent HMF. A global reorganiza-
tion in the HMF generates,inevitably, aBϑ component. In a
previous work (Ḱota and Jokipii, 1999) we suggested a par-
ticular way to handle this problem by usingheliomagnetic
coordinates, which are attached to the field lines. This tech-
nique was applied successfully by Kóta and Jokipii (1983)
and Hattingh and Burger (1995) to model cosmic-ray trans-
port in a rigidly corotating Parker field with a tilted Helio-
spheric Current Sheet (HCS).
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We are developing a numerical code employing heliomag-
netic coordinates. The use of heliomagnetic coordinates of-
fers a promising avenue if diffusion is primarily field aligned.
The subtleties of the field line geometry are probably less
important if perpendicular diffusion due to the random mix-
ing of field lines is effective. The code is custom designed
to address cases when perpendicular diffusion is present but
small.

In the present work we attempt to advance this concept.
Kóta and Jokipii (1999) reported illustrative results with par-
allel diffusion only. In that approach, modulation is deter-
mined primarily by the length of the individual field lines
between the observer and the outer boundary. Consequently
the predicted variations were irreally large and are conceiv-
ably reduced when cross field transport due to perpendicular
diffusion and drifts are also included. Numerical results are
anticipated by the time of the Conference.

2 Equations in Heliomagnetic Coordinates:

The equation governing the variation of the omnidirectional
cosmic-ray density,f(xi, p, t), in the position,xi, momen-
tum, p, and time,t, was written down by Parker (1965). In
Cartesian coordinates:
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whereVj andVDj are the convection and drift velocities, re-
spectively. Q accounts for sources. The anisotropic diffusion
tensor,κij , can be written as

κij = κ⊥δij + (κ‖ − κ⊥)bibj (2)

with bi = Bi/B denoting the unit vector pointing in the di-
rection of the field.

What we call heliomagnetic coordinates is essentially us-
ing (beside the radial distance,r) the angular variablesΘ and
Φ, which identify the footpoints of the respective field line at
a reference time,t0. Then,Θ andΦ remain constant on a
field line. This choice of curvilinear coordinates calls for the
use of co-variant and contra-variant coordinates. The form
of (2) for the diffusion tensor, expressed in covariant form,
becomes

κij = κ⊥g
ij + (κ‖ − κ⊥)bibj (3)

while Parker’s equation (1) takes the form
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where g is the determinant of the metric tensor,gij , and
gijgjk = δik. The structure of the HMF and the geometry
of the field lines appear in the metric tensor,gij , which will,
in general, evolve in time according to the dynamics of the
footpoints, and then propagate outward in radius at the solar
wind speed,V . Since we consider galactic cosmic rays we
disregarded the source term,Q. Furthermore we took(∇V)
assuming a uniform radial wind.

The virtue of magnetic coordinates is that the magnetic
field has only one non-zero component, bothbΘ andbΦ van-
ish. The components of the drift velocity,V jD, are easy to
obtain, and the HCS can be defined as aΘ = const. surface.
The random transverse field component suggested by Jokipii
& K óta (1989) to impede fast polar transport can be incor-
porated as well. At the same time, the method has its draw-
backs and limitations. The metric tensor,gij , becomes ill-
conditioned at large radii where the HMF is predominantly
azimuthal. For similar reasons the solar wind speed should
preferably be uniform, and the motion of footpoints needs to
be regular and tractable.

3 Motion od Footpoints

In the simplest representation of the Fisk field (Fisk, 1996;
Zurbuchen et al., 1997, Fisk and Jokipii, 1999) the motion
of the footpoints is the combination of two rotations: a rigid
corotation around the rotational axis of the Sun and an addi-
tional rotation around and offset axis. We shall first consider
HMF models where the footpoint motion can be described as
a rotation but the axis of rotation is allowed to vary in time.

In a more general model of a time-dependent HMF, the
motion of footpoints on the Sun,vft determines the variation
of the radial magnetic field,Br, at the Sun

∂Br
∂t

+∇(vftBr) = 0 (5)

We shall discuss various types of divergence-free motion
of the footpoints. The geometry of the frozen-in field lines
of the HMF carried by the solar wind is calculated assuming
a uniform radial solar wind.

4 Summary

Numerical results, which are anticipated by the time of the
Conference, will be presented.
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Kóta, J. and Jokipii, J. R.,Space Sci. Rev., 83, 137, 1998.
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