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Abstract. In weak magnetic turbulence, the diffusive predic-
tion for the quasilinear spreading of magnetic field lines as a
function of the distance∆z along the average field requires
the existence of a sufficiently short correlation lengthL.
Releasing the assumption concerning the existence ofL,
we present an analytical proof that, whenever the spectral
index of the turbulence does not exactly vanish below the
parallel wavenumber10/∆z, the transport of the field lines
is anomalous (or non-diffusive) on the scale∆z. Simple ex-
pressions are derived for the transport exponentα and coeffi-
cientDα (defined by a field line spreading equal toDα∆zα).
This allows for a quantitative comparison with the prediction
of the original quasilinear theory. Some consequences for
the dispersion of solar particles in the interplanetary mag-
netic fields are also discussed.

1 Introduction

The transport of cosmic-ray particles across the regular com-
ponent of the magnetic field, in both the interstellar and in-
terplanetary media, is for a large part induced by the trans-
port of the magnetic field lines themselves (Jokipii, 1966;
Schlickeiser, 1994). At the shock fronts of supernovae like
SN1987A, the observed acceleration time of GeV-electrons
suggests a transport also dominated by the wandering of the
magnetic field lines, as the inferred diffusion coefficient of
the electrons by far exceeds the Bohm value of this coeffi-
cient (Ball and Kirk, 1992; Ragot, 2001a and b). Under-
standing the behavior of magnetic field lines in a turbulence
composed of random fluctuationsδB superimposed on a reg-
ular magnetic fieldB0 is thus of prime importance to model
the propagation of charged particles in both astrophysical and
space plasmas.

The case of small magnetic field perturbation is treated by
the quasilinear theory (Jokipii and Parker, 1968) for weak
magnetic turbulence. This theory, which neglects the per-
pendicular displacement of the field lines in the derivation
of their spreading (first order derivation inδb ≡ δB/B0),
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predicts a diffusion of the field lines beyond the parallel cor-
relation length,Lc‖ , defined as the characteristic scale of
the two-point correlation function. There is a strong belief
among astrophysicists and physicists in general that, as long
as the quasilinear approximation holds,i.e., as long as the
perpendicular displacement can be neglected, the quasilinear
theory does predict a diffusion of the magnetic field lines or,
more accurately, their linear spreading across the direction of
B0 with the distance∆z alongB0. However, this diffusive
result is conditioned by the existence of a finite correlation
length,Lc‖ , small enough to consider the transport of the
field lines on much longer scales.

In the original papers by Jokipii and Parker (1968) and
Jokipii and Coleman (1968), this correlation length was es-
timated as the inverse of the upper wavenumber in the low,
flat part of the turbulence spectrum. A power spectrum flat
below k = L−1

c produces indeed a correlation function of
the magnetic field perturbation with an exponential cutoff of
characteristic scaleLc. Yet a flattening of the spectrum at
sufficiently high frequency is not guaranteed. For instance in
the solar wind, the early observations apparently indicating
a flattening at10−5 Hz, which would have given a quasilin-
ear correlation just short enough, have not been confirmed
by more recent measurements which show power-law spec-
tra down to lower frequencies (Goldstein et al., 1995). In
general the presence of such extended, projected spectra, rel-
atively smooth but not flat, is expected for an anisotropic
turbulence (e.g., Ragot, 1999a), and as the damping rates
of many plasma waves depend on the propagation angle of
the waves, anisotropic turbulence is likely to be a quite com-
mon feature of plasmas. Clearly, in those cases of extended
projected spectra, a study of the field lines transport is still
needed even in the quasilinear regime of magnetic field per-
turbation, as the spreading of the field lines on any relevant
scale will be determined by a part of the spectrum that is not
flat, hence neglected in the original quasilinear theory.

Here, we release the assumption concerning the existence
of a short correlation length and express the spreading of the
field lines along the axisx normal to the average magnetic
field as a function of the projected power spectrum of tur-
bulence. In the case when this projected spectrum can be
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described as a power law on an interval of wavenumbers
around1/∆z, which is generally assumed in any study of
turbulence, we then establish a new asymptotic expansion
for the variance〈∆x2〉. With this expansion, we analytically
prove that whenever the spectral index of the turbulence does
not exactly vanish on an interval of wavenumbers at least
two or three decades broad around1/∆z, the transport of the
field lines is non-diffusive, or anomalous:〈∆x2〉 increases as
(∆z)α with α different from 1. This confirms the numerical
result obtained by Ragot (1999) for similar power-law spec-
tra. We also establish simple expressions for the transport
exponentα, as well as the transport coefficientDα, defined
by 〈∆x2〉 = Dα(∆z)α. These expressions are particularly
important for a quantitative comparison with the spreading
predicted by the original quasilinear theory.

We consider here as in the paper by Ragot (1999a) a three-
dimensional turbulence in quasilinear regime with acontin-
uousspectrum; hence, unlike Pommois et al. (1999) we al-
ways keep the length scale∆z much shorter than the inverse
of the minimum wavenumber, which is an absolute requisite
to model a continuous spectrum. We start below by drawing
the main lines of the classical quasilinear derivation.

2 Original quasilinear theory

In the quasilinear approximation,i.e., if the perpendicular
deviation is neglected, the displacement along the axisx of
the field line that goes through the pointr0 = (x0, y0, z0)
can be written as

∆x = x(r0, z)− x0 =
∫ z

z0

bx(x0, y0, z
′)dz′ , (1)

whereb stands forδB/B0, and the variance〈∆x2〉 can be
expressed as:

〈∆x2〉 =
∫ z

z0

dz′
∫ z

z0

dz′′ 〈bx(x0, y0, z
′)bx(x0, y0, z

′′)〉

= 2∆z
∫ ∆z

0

ds
(

1− s

∆z

)
Rxx(s) . (2)

∆z = z − z0. The brackets〈 〉 denote an average over a sta-
tistical ensemble of systems andRxx(s) = 〈bx(x0, y0, z0)
bx(x0, y0, z0 + s)〉 stands for the two-point correlation func-
tion of the magnetic field alongx. In the usual quasilin-
ear theoryRxx is assumed to cut off on the length scale
Lc‖ , known as the parallel correlation length, and the limit
∆z � Lc‖ is taken so that

〈∆x2〉
2∆z

≈
∫ +∞

0

dsRxx(s) ≡ D . (3)

It shows that the magnetic field lines diffuse with the diffu-
sion coefficientD on length scales much longer thanLc‖ .
However, it does not prove thatLc‖ exists and is very much
smaller than the size of the system, which happens to be nec-
essary to observe a diffusionin the system.

In the following, we release the assumption concerning the
existence of a finite correlation length and derive a general
expression for the spreading of magnetic field lines in the
quasilinear regime of turbulence.

3 Quasilinear spreading of magnetic field lines

If km andkM denote the lowest and highest wavenumbers in
the spectrum, the spreading of the field lines:

〈∆x2〉 = 2k3
m

∫ z

z0

dz′
∫ z

z0

dz′′
∫
dk b2x(k) cos[k‖(z′ − z′′)] (4)

can be deduced from

bx(r)
2

=
∫
dk⊥

∫ kM

0

dk‖ b̃x(k) cos
(
k⊥ · r + k‖z + φk

)
, (5)

where b̃x(k)eiφk is the Fourier transform ofbx(r) with
b̃x(k) > 0. The derivation of Eq. (4) assumes, as in the
quasilinear theory, that the phasesφk decorrelate on the scale
km but this assumption of no spectral structuring could of
course be released by introducing a different phase-correla-
tion scale and substituting for the factork3

m. Integrating now
overz′ andz′′, we obtain in the quasilinear regime of mag-
netic field perturbation:

〈∆x2〉 = 4k3
m

∫ kM

0

dk‖
[
1− cos

(
k‖Z

)] Px‖(k‖)
k2
‖

, (6)

where

Px‖(k‖) =
∫ 2π

0

dφ

∫ kmax(k‖)

kmin(k‖)

dk⊥ k⊥b
2
x(k‖, k⊥, φ) (7)

is thex-component of the power spectrum projected alongB0.
kmin(k‖) = [max(0, k2

m − k2
‖)]

1/2 andkmax(k‖) = (k2
M −

k2
‖)

1/2. A somewhat more detailed derivation of expression
(6) can be found in Ragot (1999).

When the spectrum is smooth enough to be represented as
a series of power laws, the right-hand side of Eq. (6) can
be integrated over the parallel wavenumbers to obtain an ex-
plicit form of the field lines spreading.

For a power-law spectrumPx‖(k‖) = Px‖(k1)(k‖/k1)−a

from k1 to +∞, we find in the quasilinear regime:

〈∆x2〉 = 4k3
mPx‖(k1)k−1

1

×
{

1
1 + a

+ |k1∆z|+1+aΓ(−1− a) sin
aπ

2
−

1
1 + a

FP,Q

[{
−1− a

2

}
,

{
1
2
,

1− a
2

}
;
−(k1∆z)2

4

]}
(8)

whereFP,Q denotes the hypergeometric function anda >
−1. Whena > −1 andk1∆z � 1, an expansion of the
hypergeometric function gives:

〈∆x2〉 = 4k3
mPx‖(k1)k−1

1

{
|k1∆z|1+aΓ(−1− a) sin

aπ

2
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− (k1∆z)2

2(1− a)
+©

(
(k1∆z)4

)}
. (9)

Eq. (9) shows that the spreading of the field lines is not lin-
ear unlessa = 0. Moreover, sinceΓ(−1 − a) sin(aπ/2) →
π/2 as a → 0, the usual quasilinear diffusion coefficient
2πk3

mPx‖(k1) is recovered in this limit of a flat spectrum.
For a finite, upper wavenumberk2, one has to subtract

4k3
mPx‖(k1)ka1

∫ +∞
k2

dk‖
[
1− cos

(
k‖∆z

)]
k−2−a
‖ from the

right-hand side of Eq. (8), which can be estimated in a sim-
ilar way as the integral fromk1 to +∞. However, the first
term resulting from the integration ofk−2−a

‖ is small com-

pared to the part ink1 as soon as(k1/k2)1+a � 1. As for
the other term, it is negligible fork2∆z � 1 anda > −1 be-
cause of the Riemann-Lebesgue lemna (Bender and Orszag,
1978), since

∫ +∞
k2

dk‖ |k‖|−2−a exists. In consequence if

k−1
2 � ∆z � k−1

1 anda > −1, the relations (8), (9) still
apply for a power-law spectrum on a finite interval[k1, k2].

Whena < −1, or even approaches−1 from above, the
upper boundary comes into play. The exponentα does not
converge to a unique value but tends to 0 when averaged on a
broad range of length scales∆z. As such spectral indexes are
quite unrealistic for a turbulence spectrum, we do not discuss
this point in more details.

4 Transport exponent and coefficient

Our new formulation for the variance〈∆x2〉 (Eq. [9])
presents a real advantage over the one of Ragot (1999). The
transport exponentα and transport coefficientDmα , defined
by

〈∆x2〉 ≈ Dmα(∆z)α , (10)

can now be expressed in analytical form. Fromα = d(log
〈∆x2〉)/d(log ∆z), we obtain for spectral indexesa > −1
or−0.5 (depending on how smallk1∆z is),

α = 1 +
aA1(k1∆z)1+a +A2(k1∆z)2

A1(k1∆z)1+a +A2(k1∆z)2
(11)

with A1 = Γ(−1 − a) sin(aπ/2) andA2 = −1/[2(1 − a)].
In the limit of small|a|, namely,|a| < 0.5 for k1∆z ∼ 10−1

and|a| < 1 for k1∆z → 0, we also have

Dmα = 4k3
mPx‖(k1)ka1A1 , (12)

whereas in the limit of larger|a| (|a| > 2 for k1∆z ∼ 10−1

and|a| > 1 for k1∆z → 0),

Dmα = 4k3
mPx‖(k1)ka1A2 . (13)

Figure 1 shows the transport exponentα as a function of
the spectral indexa. The transport of the magnetic field lines
is supradiffusive (α > 1) for any positive spectral index of
turbulence and subdiffusive (α < 1) for any inverted spec-
trum, which confirms the results of Ragot (1999). Moreover,
|α− 1| already exceeds0.5 for a spectral index of0.6, in ab-
solute value. These values of the transport exponent can also
easily be guessed from the expansion (9).
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Fig. 1. Transport exponentα as a function of the spectral indexa
for k1∆z = 10−2. The spreading of magnetic field lines in the
quasilinear regime of turbulence is only linear for a flat spectrum.
For all decreasing power laws (a > 0), the field lines supradiffuse
(α > 1), whereas for inverted power laws, the field lines subdiffuse
(α < 1), as long asa > −2. For a < −0.5, α is averaged on a
broad range of∆z.

As the spectral indexa approaches 1 from below, the term
in −(k1∆z)2/[2(1 − a)] has a growing weight in Eq. (9),
due to the factor1/(1 − a). It is dominant fora > 1 so
that its sum with(k1∆z)1+aΓ(−1− a) sin(aπ/2), which is
then negative, remains always positive. In the limit of very
small k1∆z, the other term becomes completely negligible
andα converges to 2 as soon asa > 1. Fork1∆z = 10−2 as
in Figure 1, the first term still has a significant weight up to
a = 1.5 − 2, but for all spectral indexes steeper than 2, the
transport exponentα is practically equal to 2.

For |a| < 0.5 − 0.8, 〈∆x2〉 is accurately determined by
the first term. In this range of spectral indexes, the transport
exponent simply reduces toα = 1 + a. This case is of par-
ticular interest since it corresponds to a spectrum that would
tend to flatten at low frequency, but not perfectly, as is ob-
served for instance in the solar wind (Goldstein et al., 1995)
(see Fig. 2, Ragot, 1999b).

Note thatPx‖(k1)ka1 = Px‖(k‖)k
a
‖ for any k‖ in the in-

terval [k1, k2] so that the value ofDmα does not depend on
the lower limitk1 of the interval on whichPx‖ is in k−a‖ , but
solely on the level of turbulence in this interval of parallel
wavenumbers. The range of validity ina for α = 1 + a,
however, does depend on the value ofk1∆z. If k1∆z → 0,
it extends from−1 to 1.

The condition established by Ragot (1999a) to observe, in
the quasilinear regime of turbulence, a diffusive spreading of
the field lines on at least one decade is confirmed; namely,
the spectrum should be flat on at least three decades around
1/∆z (2 decades fork−1

2 � ∆z � k−1
1 plus 1 for the varia-

tion of ∆z). This means that even a flattening at10−5 Hz in
the solar wind would not have guaranteed a diffusive spread-
ing of the field lines on a length scale shorter than the typical
distance between strong inhomogeneities, since the sun ro-
tates at a frequency of3.2 − 4.6 × 10−7 Hz less than 100
times smaller. This conclusion of no quasilinear diffusion
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Fig. 2. Ratio of the quasilinear field line spreading over the orig-
inal, diffusive quasilinear prediction for a given value ofPx‖(k1).
Continuous line:k1∆z = 0.01. Long-dashed line:k1∆z = 0.1.
Short-dashed line:k1∆z = 0.3.

of magnetic field lines in the inner heliosphere is not contra-
dicted by the observation of fluctuating field line directions
and could account for the lack of mixing of charged particles
propagating through the turbulent solar wind (Zurbuchen et
al., 2000) recently observed with the SWICS instrument on
ACE. A supradiffusion is indeed characterized by a lower
dispersion and ordered fields on many scales (see below).

5 Comparison with the original quasilinear prediction

A quantitative comparison of our prediction for the magnetic
field line spreading with the prediction of the original quasi-
linear theory is relatively straightforward by now. For a same
level of turbulence at the lower wavenumberk1, the ratio of
the two predicted variances can be written as

〈∆x2〉
Dm1∆z

=
2
π
A1(k1∆z)a

[
1 +

A1

A2
(k1∆z)1−a

]
+©

(
(k1∆z)3

)
. (14)

We plotted this ratio in Figure 2 for various values ofk1∆z.
What strikes at once is that the supradiffusion (a > 0) seems
to give a much slower spreading of the field lines than would
be expected for the diffusion of the original quasilinear the-
ory, whereas the subdiffusion apparently gives a much faster
transport. While this might not be entirely accurate (one
chooses a lower turbulence amplitude for largera by taking
the same value ofPx‖ [k1]), it serves our purpose pretty well
here. We want indeed to emphasize the following. A suprad-
iffusion does not necessarily mean that the transport is faster,
nor does a subdiffusion imply a slower transport. This very
much depends on the value of the transport coefficient.

Supradiffusion is characterized by a lesser dispersion of
the field lines which tend to behave in a more orderly man-
ner. While the small-scale irregularities still exist and might
give the impression that the field lines are “diffusing” in an

erratic and uncorrelated way, the large-scale transport is sig-
nificantly influenced by the lower part of the spectrum and
ordered behavior occurs on all scales, even the largest ones.
The propagator derived by Ragot and Kirk (1997) illustrates
this property with a peaked shape shifted away from zero.
For comparison, the propagator of diffusion is the well-known
Gaussian centered around the origin. In the subdiffusive case
(a < 0), the propagator is more widespread and peaks at the
origin. The transport is dominated by the small scales and
long ordered “flights” are extremely rare. A greater disper-
sion might still result, though, from the fact that some field
lines can wander relatively quickly in some part of the space
while others (the majority) are trapped in smaller-scale do-
mains on longer length scales.

6 Conclusion

To summarize, we have shown analytically that in the quasi-
linear regime of turbulence, the transport of magnetic field
lines is anomalous on the length scale∆z whenever the pro-
jected spectrum of turbulence is not perfectly flat below the
parallel wavenumber10/∆z. The field line spreading〈∆x2〉
varies as(∆z)α with α 6= 1, 0 ≤ α ≤ 2. A decreasing spec-
trum results in a supradiffusion of the field lines (α > 1),
whereas an inverted spectrum implies a subdiffusion (α <
1). For a spectrum that takes the form of a power-law on
an interval of parallel wavenumbers around(∆z)−1, we es-
tablished new, simple expressions for the transport exponent
and coefficient (Eq. [11], [13]). These expressions general-
ize the quasilinear prediction for the spreading of magnetic
field lines.
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