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Abstract. Magnetic fluctuation power spectra in the solar
wind are commonly observed to have a power-law form with
a spectral indexs = 5/3 at frequencies lower than about1
Hz. This characteristic feature of magnetic fluctuation spec-
tra defines what is called the inertial range and may be de-
scribed, in wavenumber space, by Kolmogorov diffusion. For
higher frequencies, it has been suggested that collisionless
damping of Alfv́en and magnetosonic waves leads to steeper
power-laws; this regime is sometimes labeled as the dissi-
pation range. Here we argue, based on numerical calcula-
tions, that it is more likely that the observed steeper power-
laws result from an increase in the wavenumber diffusion
rate caused by whistler-like dispersion than from collision-
less damping. The calculations lead to the prediction, that
this broken power-law feature of magnetic fluctuation spec-
tra is only observable in low-βp plasmas.

1 Introduction

Observations on spacecraft show magnetic fluctuations in the
solar wind over a broad range of frequencies, from well be-
low the proton cyclotron frequencyΩp (∼ 0.1 − 1 Hz) to
several hundred Hz (Coleman, 1968; Gurnett, 1991). In the
spacecraft rest frame, the observed power spectrum frequency
f shows a power-lawf−5/3 between∼ 0.001 and 1 Hz.
For higher frequencies (f > 1 Hz), observed spectra show
steeper power-laws with an spectral index of roughly3 (cf.
Goldstein et al., 1994; Leamon et al., 1998). It is usually
assumed that the observed frequency spectra correspond to
wavevector spectra which are Doppler-shifted by the rapid
flow of the solar wind. Under this assumption the discus-
sion of power spectra is usually framed in terms of wave-
lengths and/or wavenumbers. It is widely accepted that the
k−5/3 spectrum is the “inertial range” of MHD turbulence in
the solar wind, presumably resulting from nonlinear cascade
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processes from longer to shorter wavelengths. The differ-
ent power-law dependencies in wavenumber are sometimes
interpreted such that the breakpoint between the two ranges
represents the onset of collisionless damping (Denskat et al.,
1983). Thus, the shorter wavelength regime is sometimes
called the “dissipation range” (e.g. Goldstein et al., 1994;
Leamon et al., 1998, 1999, 2000). Collisionless damping of
Alfv én and/or magnetosonic waves was used by several au-
thors in order to describe this dissipation (see e.g. Marsch,
1991; Leamon et al., 1998; Gary, 1999; Marsch, 1999).

Assuming that magnetic fluctuations can be treated as an
ensemble of linear plasma wave modes, Li et al. (2001)
investigated the influence of collisionless damping of left-
hand circular polarized Alfv́en and right-hand circular po-
larized magnetosonic modes on magnetic power spectra at
kc/ωp > 1 (whereωp is the proton plasma frequency) as
a function ofβp = 8πnpTp/B2

0 (herenp and Tp are the
proton number density and the proton temperature in energy
units, respectively) and different propagation angles with re-
spect to the background magnetic fieldB0. Using a lin-
ear Vlasov theory approach for damping functions, Li et al.
(2001) showed that, for most directions of wave propagation,
damping rates increase so strongly in wavenumber that they
overwhelm the spectral energy input from the cascade mech-
anism, resulting in sharp cutoffs in fluctuation power spectra.
For parallel propagating magnetosonic waves at lowβp, Li et
al. (2001) concluded that the small proton cyclotron damp-
ing rate leads to continuous Kolmogorov spectra. Thus, it
appears that dissipation can not explain the relatively steep
power law spectra observed at wavenumbers beyond the in-
ertial range.

Based on the work of Li et al. (2001), Stawicki et al.
(2001) considered recently the specific case of the magne-
tosonic/whistler mode fork × B0 = 0 andβp < 1. Un-
der these conditions proton cyclotron damping is weak, so
that dispersion begins at wavenumbers considerably smaller
than those at the onset of damping and, therefore, becomes
more important for the diffusion of fluctuation energy at short
wavelengths. At long wavelengths, i.e. the inertial range, the
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cascading of wave energy is described by Kolmogorov dif-
fusion until a breakpoint is reached where dispersion sets in.
With a faster energy transfer rate resulting from this disper-
sion, power spectra become steeper at intermediate wavenum-
bers; this is the dispersion range. At shorter wavelengths,
where collisionless electron cyclotron damping dominates,
the cascade mechanism is too weak to sustain power law
spectra, and magnetic power spectra decline precipitously
with increasing wavenumber; this is the dissipation range.

2 Energy Diffusion in Wavenumber Space

In order to describe the evolution of magnetohydrodynamic
turbulence by diffusion of fluctuation energy in wavenumber
space, Zhou and Matthaeus (1990) derived, based on phe-
nomenological and dimensional arguments, a transport equa-
tion for the wave spectral density including terms for spatial
convection and propagation, nonlinear energy transfer across
wavenumber space and a source and/or sink of wave energy.
For isotropic turbulence the diffusion equation for the omni-
directional spectral densityW (k) is

∂W (k)
∂t

=
∂

∂k

[
k2D(k)

∂

∂k

(
k−2W (k)

)]
+ γ(k)W (k) + S(k) (1)

where the first term of the right-hand side represents diffu-
sion of fluctuation energy in wavenumber space, expressed
by a diffusion coefficient

D(k) = k2/τs(k) . (2)

Here τs(k) denotes the spectral energy transfer time scale.
The last two terms of the right-hand side represent, by the
damping rateγ(k), collisionless dissipation of the fluctua-
tion and a source functionS(k) for wave energy injection,
respectively (see also Miller et al., 1996).

Even though equation (1) is derived from phenomenologi-
cal and scaling arguments, it offers an attractive and tractable
way of modeling the energy cascade process in wavenum-
ber space. Assuming that damping is negligible fork <
kd, wherekd is the dissipation wavenumber beyond which
γ(k) becomes important, the spectrumW (k) in this (iner-
tial) range is mostly determined byD(k), which depends
upon the cascade phenomenology, i.e. the spectral energy
transfer time scaleτs. For the Kolmogorov phenomenology,
Zhou and Matthaeus (1990) proposed

D(k) = C2vAk
7/2 [W (k)/2UB ]1/2 , (3)

whereC2, vA and UB = B2
0/8π denote a constant, the

Alfv én speed and the energy density of the background mag-
netic fieldB0, respectively. Upon substituting this into equa-
tion (1) and assuming a steady state with no damping, we
obtain the usual Kolmogorov spectrum in the inertial range
W (k) ∝ k−s, wheres = 5/3.

3 Collisionless Damping and Mode Dispersion

To obtain damping rates for the magnetosonic/whistler mode
at k × B0 = 0 and to develop quantitative criteria for two
important parameters, i.e. for the dissipation wavenumber
kd and the dispersion wavenumberkω, Stawicki et al. (2001)
used the linear Vlasov theory for fully electromagnetic fluc-
tuations under the assumption of a collisionless and homo-
geneous electron-proton plasma in which both species have
Maxwellian velocity distributions andTp = Te.

Using the numerical solutions, Stawicki et al. (2001) de-
rived fitting functions for the damping rates of the magne-
tosonic/whistler mode in the proton as well as in the electron
cyclotron damping range and for the real frequencyωr(k) in
order to use them in the solution of the transport equation
describing the evolution of fluctuation energy in wavenum-
ber space.

For the proton cyclotron damping regime, which corre-
sponds roughly to0 < kc/ωp < 10, an appropriate fitting
function is

γ(k‖)
Ωp

= −µ1 exp
(
−µ2k

2
‖c

2/ω2
p

)
exp

(
−µ3ω

2
p/k

2
‖c

2
)

(4)

where the fitting parameters, on the domain0.50 ≤ βp ≤
10.0, are

µ1 = 0.33β0.54
p exp

(
−3.97/β2

p

)
µ2 = 0.80/β1.07

p and µ3 = 1.73/β0.91
p (5)

For the electron cyclotron damping regime, Stawicki et al.
(2001) obtained, on the domain0.10 ≤ βe ≤ 10.0, for the
fitting function the expression

γ(k‖)
Ωp

= −ν1

(
k‖c/ωp

)2 exp
(
−ν2ω

2
p/k

2
‖c

2
)

(6)

with the corresponding fitting parameters

ν1 = 0.46β0.26
e and ν2 = 893/β0.57

e . (7)

Gary (1999) defined the dissipation wavenumberkd as the
smallest wavenumber corresponding toγ/Ωp = −0.10. Gen-
eralising this definition in order to accomodate the higher
frequencies of the whistler mode, we define the dissipation
wavenumber correspondingly to the onset of cyclotron damp-
ing by k2

dc
2/ω2

p = µ3 andν2 in the fitting functions (4) and
(6). Using the fitting parametersµ3 andν2, one obtains in
the proton and electron cyclotron regimes

kdc/ωp = 1.32/β0.46
p and kdc/ωp = 29.9/β0.29

e (8)

To determine the dispersion wavenumberkω, which cor-
responds to the value at which the real part of the dispersion
relation,ωr(k), begins to depart significantly from the dis-
persionless relationωr/k =constant, Stawicki et al. (2001)
derived, based on numerical solutions to the linear dispersion
equation, an approximate empirical fit for the real frequency
on the wavenumber domain0 ≤ kc/ωp ≤ 4.0, which is the
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range of significant proton cyclotron damping forβp lower
than about 4,

ωr/Ωp = kc/ωp + 0.75 (kc/ωp)
2
, (9)

confirming the suggestion of Gary (1993) thatωr(k)/Ωp ver-
suskc/ωp is relatively independent ofβp at low frequencies
[see Fig. 6.3 of Gary (1993)]. Estimating the onset of a clear
departure fromωr = vAk nearkc/ωp ' 1, Stawicki et al.
(2001) found that the dispersion wavenumber for the magne-
tosonic/whistler mode scales as

kωc/ωp = 0.9 . (10)

To take into account the influence of dispersion properties
on the diffusion of fluctuation energy beyond the dispersion
wavenumber, Stawicki et al. (2001) assumed that the spectral
energy transfer time scale is proportional to the inverse of the
mode frequency, yielding for the corresponding diffusion co-
efficient, after substituting Eq.(9) into Eq.(2) and, since dis-
persive effects are appreciable forkc/ωp greater than about
unity, neglecting the first term in Eq.(9),

D(k) ' Ck4 , (11)

whereC is a constant.

4 Numerical Calculations

To solve Eq.(1) numerically we used the Crank-Nicholson
technique. We chose10−4 Gauss for the background mag-
netic field and30 km s−1 for the Alfvén speed. Through
the source functionS(k), we injected fluctuation energy at
kc/ωp = 0.002 with a rate of10−15 erg cm−3 s−1. In
contrast to Li et al. (2001) who assumed that Kolmogorov
diffusion is the only energy transfer process, we here used
equation (11) forD(k) at intermediate wavenumbers.

Figure 1 illustrates the temporal evolution of a magnetic
power spectrum forβp = 0.5, showing that steady-state con-
ditions are attained relatively quickly, due to the increased
energy flux rate in the dispersion range [cf. Fig. 2 in Li
et al. (2001)]. We obtain the usualk−5/3 power spectrum
in the inertial range and, beyond the dispersion wavenumber
kωc/ωp ' 1, a steeper power-law withs = 3 in the dis-
persion range, followed by an even more rapidly diminishing
“cutoff” spectrum beyond the electron cyclotron dissipation
wavenumberkdc/ωp ' 30. Since proton cyclotron damping
is relatively weak at low values ofβp, an influence of the ion
cyclotron dissipation wavenumber is negligible.

Figure 2 illustrates the influence of magnetosonic/whistler
dispersion and damping on late-time, steady-state magnetic
fluctuation power spectra in our model. Here we consider
three values forβp and obtain in the inertial range thek−5/3

power spectra in each case. Near the dispersion wavenumber,
kωc/ωp ' 1, the character and properties of the power spec-
tra changes sensitively as functions ofβp. Therefore, we re-
gard the wavenumber domain which is defined bykω and the
electron cyclotron dissipation wavenumberkd as the disper-
sion range and shorter wavelengths as the dissipation range,

Fig. 1. Numerical result from solving equation (1) showing the tem-
poral evolution of the power spectrumW (k) for βp = 0.5 as a
function of the dimensionless wavenumberkc/ωp, where the dif-
fusion coefficient for the inertial range is given by Eq.(3), and for
the intermediate wavenumber regime by Eq.(11). The proton and
electron cyclotron damping rates are given by equations (4) and (6)
with the corresponding fitting parameters.

resulting from electron cyclotron damping overwhelming the
fluctuation energy which cascades down from longer wave-
lengths in the dispersion range. With increasingβp ion cy-
clotron damping becomes more appreciable over a limited
wavenumber range in the dispersion regime resulting in a
short-range dip in the power spectrum, followed by a dis-
persive regime inW (k) with s = 3 until the cutoff spec-
trum of the electron cyclotron dissipation range is reached at
kdc/ωp ' 20. Finally, atβp = 4.5, proton cyclotron damp-
ing becomes strong enough to completely absorb the fluc-
tuation energy cascading down from the inertial range, no
dispersion range is evident, and atkdc/ωp ' 0.4 the proton
cyclotron dissipation range, with its cutoff power spectrum,
begins.

In summary, increasingβp leads to a shrinking of the dis-
persion range, resulting from the shifted onset of the electron
cyclotron dissipation range to lower wavenumbers. Finally,
at higherβp values the dispersion range disappears and is re-
placed by the ion cyclotron dissipation range with its strong
cutoffs.

5 Conclusions

We used a model of weakly turbulent magnetic fluctuations,
Kolmogorov diffusion of fluctuation energy at long wave-
lengths and collisionless proton and electron cyclotron damp-
ing at intermediate and short wavelengths, respectively. To
consider the influence of wave dispersion on solar wind mag-
netic power spectra we used, based on dispersion and damp-
ing of the magnetosonic/whistler mode derived from linear
Vlasov theory, a modified fluctuation energy transfer rate
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Fig. 2. Computational model results for the power spectrum: late-
time values of magnetic fluctuation power spectra for three given
values ofβp as functions of the dimensionless wavenumberkc/ωp,
using the same diffusion coefficients and damping functions as for
Fig. 1.

at intermediate wavenumbers. Proton cyclotron damping is
very weak forβp < 1 andk ×B0 = 0, so that in this case
the onset of whistler dissipation is due to electron cyclotron
damping, at considerably smaller wavelengths than the onset
of dispersion.

Using this scenario in a numerical code which describes
the transfer of fluctuation energy in wavenumber space, we
find thatW (k) shows the major features of magnetic power
spectra observed in the solar wind, i.e. a long wavelength
inertial range withs = 5/3 and a steeper power-law spec-
trum at intermediate wavenumbers withs = 3. We call this
intermediate regime the “dispersion range”. The true dis-
sipation range is at still shorter wavelengths where we find
cutoffs in the power spectrum. Finally, increasingβp leads
to a stronger proton cyclotron damping atkc/ωp ≈ 1 where
dispersion also begins. In this case, we find sharp cutoffs
instead of steep power-laws for the power spectra.

The results support the conclusion of Li et al. (2000) that
the relatively steep power-law magnetic spectra observed at
intermediate frequencies in the solar wind are not due to col-
lisionless damping. We have extended this result by con-
cluding that such power-law spectra are likely due to an in-
crease in the energy transfer rate of magnetic fluctuation en-
ergy at wavenumbers associated with wave dispersion in the
absence of damping. We find a dispersion range for magne-
tosonic/whistler modes atβp < 2.5 andk×B0 = 0. There-
fore, we predict that such steep power law magnetic fluc-
tuation power spectra in the solar wind should be observed
primarily atβp < 2.5, with right-hand polarization, and with
wavevectors parallel or antiparallel to the background mag-
netic field. The power spectra observed by Denskat et al.
(1983), which exhibitf−3 behaviour to frequencies much
above the Doppler-shifted proton cyclotron frequency, would
appear to support this whistler-based prediction.
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