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The BGK Boltzmann equation and anisotropic diffusion
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Abstract. In this paper, we study a model of cosmic ray 2 The Model

diffusion based on a gyro-phase, and pitch-angle dependent

BGK Boltzmann model, involving two collision time scales The BGK Boltzmann equation for the momentum space
7, andr associated with scattering perpendicular and par-tribution functionf(r, p, t), for particles with momenturp,

allel to the background magnetic figRY,. The time scale;  (velocity v), at positionr at timet, in a uniform backgrounc
describes the ironing out of gyro-phase anisotropies, and the'agnetic fieldB, = (0,0, B;)” along thez-axis, may be
relaxation of the full gyro-phase distributighto the gyro- ~ written in the form:

averaged distributiorfy. The time scale-; determines the D) , of fF—fo  fo—Fo

diffusion coefficient ., perpendicular to the mean magnetic —, + v-Vf— Qa—(b = - ( T ) ; 1)
field, and the corresponding anti-symmetric diffusion coeffi- + I

cientr 4 associated with particle drifts. The time scalede-  where

scribes the relaxation of the pitch angle distributjfgrto the on 1

isotropic distributionfy, and determines the parallel diffu- ¢/ — 1 fdp, Fo= 1/ fo dp, 2)
sion coefficient;. The Green function solution of the model 21 Jo 2J

equation is obtained, for the case of delta function initial data ., | e the gyro-phase averaged distribution functigy, (

in position, pitch angle and gyr_o—phase, In terms (.)f Fou”er'and the isotropic component of the distribution functidp)(
Laplace transforms. The solutions are used to discuss NONL momentum space, and— cos @ is the pitch angle cosine

diffudsive anld t_jiffusiveh!cl)jarticlel transport. Theé;yrrlo-phase d%’The gyro-phase derivative tersl f,, on the left-hand side
pendent solutions exhibit cyclotron resonant behaviour, mod- (1), is the Lorentz force term, whef@ — ¢Bo/(mc) is

ified by resonance broadening duerta the particle gyro-frequency, and is the relativistic particle
mass. Note thafv, 0, ¢) are spherical polar coodinates f
the velocity, where the polar axis is aloigy. Kota (1993)
used a model similar to (1), except that he used a pitch a
and gyro-phase diffusion term for the collision term.

1 Introduction

Early work by Parker (1965) and Axford (1965) derived the

form of the diffusion tensor for cosmic rays in arandom mag-3 The Diffusion Approximation

netic field, for the case of isotropic scattering. Forman et

al. (1974) used quasi-linear theory in slab turbulence to defollowing the approach of Kota (1993), we expand the (
termine the diffusion coefficients parallet,() and perpen- tribution function in the series:

dicular (<, ) to the mean magnetic fieB,, as well as the oo

anti-symmetric component of the diffusion tensog, asso-  f = Z fnexp(ing), ()
ciated with particle drifts, for the case where the distribution n=——oo

function could be expanded in spherical harmonics. Jokipii . L . ‘
(1971) and Hasselmann and Wibberenz (1970), pointed ou‘f"heref,—" . f"'. Multlp!ymg the Bolizmann equation b
that the detailed dependence of the pitch angle diffusion coS*P(—¢m¢), and integrating over the g.yro—.phaS&om ¢ =
efficientD,,,, ony is important in determining. 010 ¢ = 2m, yields the moment equations:

Ofm vsin 0 (afm—l Z.afm—1>
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vsin® (Ofmy1 . Ofm+1
T ( Ox T 0y

+v cos 9% —imQfim
0z

= _[(fm - f066n)/TL + (fO - FQ)(Sén/TH], (4)
wherem = 0,+1,+2,..., and 6; is the Kronecker delta

symbol. In particular, forn = 0, (4) multiplied by27p? sin 6,
and integrated ovetfrom# = 0to 6 = , yields the number
density conservation equation:

N, + V-8 =0, (%)

whereN = p? [ fdQ andS = p? [vfdQ are the parti-
cle number density and current, and the integrations éfer
are over solid angle in momentum space.

equations forn = 0 andm = 1:

27rp21)/ df sin 0 cos (UCOS@ﬁ + fo ; F0> ~ 0, (6)
0 I
9 9 [ vsind %_ fo
271p v/o df sin 9( 5 (Bm ay
i+ ﬁ) ~0, ™
TL

to determine the diffusive curret The diffusion approxi-

mation, assumes that the scattering is strong enough to drlve
the distribution function to a near isotropic state, and that the
effective scattering time is much shorter than the time scale
for the evolution ofFy. Using (6) and (7), it follows that the

diffusive current has the form:
S:—Ii”NzeB—fﬂ_vLN—HAVNXeB, (8)
whereep = e, is the unit vector alon®,, and

U2TL
3(14Q277)’

2
_ v _
K| =—5" KL=

3 KA:QTLHL. (9)

In the diffusion
approximation, one uses the approximate moment balance

wherev| = 1/, vi = 1/7, and f(k, p,0) is the Fourier
transform of the initial datd(r, p, 0). For Dirac-delta initial
data, withf (r, p,0) = Ad(r — ro)d(p — wo)d(¢ — ¢o), we
obtain

f(k,p,0) = [A/(271)%] exp(—ik-r)

6(p — f10)0 (¢ — o).
Using (12) as the source term in (11), and integrating (
yields the solution:

(12)

fo=191(¢,0)] (v Fo — (v —vi)fo) x
x[Z(2m,0)/¢C = Z(¢,0)]} + Q. (13)
where
_ Al(¢o,00) exp(—ik-ro)d(p — po) "
(2m)3Q (o, 0)
x (% ~ (0 on)) (14)

is the source term associated with the initial data (12).
deriving (13) and (14), the anglesand¢, are restricted to
the rangg0, 2], and the conditiorf(¢ = 0) = f(¢ = 2n)

is used to determine the integration constant. In (13) and

I(¢,0) = exp(—(§+17J_+ik||rgcosﬁ)(¢—<1))

—ikrysinfsin(¢p — <I>)), (15)
is the integrating factor for (11), where we use the notat
= S/Q v = VL/Q V” = VH/Q and

P
1(6,6) = /0 1(&,0)dg!,

¢ =1—exp[—27m(vL + 5+ ikrycosh)]. (16)

In (14)-(16),(k, ©, @) are spherical polar coordinates fior
with polar axis alongBo; k| = kcos© andk, = ksin®
and H (z) is the Heaviside step function. Equation (13) ¢
be regarded as an integral equation forand is a central
result in the analysis.

By using the standard generating function identity for Bt
functions (e.g. Abramowitz and Stegun, 1965, p. 361, 1

The expressons (9) foy, s andr 4, have the same form  muyla 9.1.41) we obtain

as Forman et al. (1974).

4 The Green Function

Introducing the Laplace-Fourier transform:

L

f(r,p,t),

f(k,p,s 5 exp(—st — ik-r)

(10)

i Jn(kirgsind) “
s+ ti(kyrgcosf +n)
x exp[(5 + 71 + ik gy cos O + in)P] x
x{1 — exp(—[5 + UL +ikyrycosf + in]o)},

Z(,0) =

17

for Z(¢,6) wherer, = pc/(¢By) is the particle gyro-radius
and J,,(z) is a Bessel function of the first kind of order
and argument. By noting thats = s/, and settings =

—iw, one finds that the denominator of th&* term in (17),

the BGK Boltzmann equation (1) reduces to the ordinary dif-5 + 7, + i(kjrg cos +n) = 0 when

ferential equation:

Qfy — (s +ikv+vy)f

[ f(k,p,0) + (v — vi)fo — v Fol, (11)

(18)

wherep = cosf. Thus the pole for the term indexed t
n in the series (17) corresponds to the cyclotron resone

w—kpop =nQ —ivy, (nintegey,
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conditionw — kjvu = nf) broadened by scattering due to
V).

Averaging (13) over gyro-phaggyields the integral equa-
tion

fo=(aFo+Q)/[1+ (1 —7/71)al, (19)

relating f, and F whereQ = [.™ Qd¢/(2r). The function
a in (19) can be expressed in the form:

a=w Y

n=—oo

J2(kirgsind)

. 2
5+ vy +i(kyrgcosf +n) (20)

The source ternd) in (19) can be expressed in the form:

Al (¢, 00) exp(—ik-ro) A
(27T)4Q s

Q=— (21)

where

Q = exp[— (547, + ikyry cosB)] x
i Jn(k17gsin @) exp(—in®)
S s+ +i(kyrgcosf+n)

{1+ exp[27(5 + V1 + ik)r, cosd)]
—expleo(5 + VL + ikjry cosf)]}.

(22)

Again note the singularities in (20) and (22) at the cyclotron

resonances (18).
By using the Newberger sum rule (NewBerger, 1982):

SECEREINCING 3
S ontx sin(my)
in (20), we obtain
a— iy ndy(kirgsin®)J_, (kirgsinf) 7 (24)

sin(my)
as an alternative, more compact expressiorfavhere

. (w - kHv,u + iVJ_)
= 0 ,

(25)

is the normalized Doppler shifted frequencyelative to the
particle, taking into account perpendicular scattering.

Averaging (19) over the pitch angle cosingyields a sim-
ple algebraic equation fdr, with solution

fy = @/t (1= my/7i)a)
1—(a/[1 + (1 =7 /71)a])’
where the angular brackets in (26) denote an average.over

For the case of isotropic scattering (= 7)) (26) simplifies
to

- (@)
Fo= 11

(26)

(27)

5 Long-scale, large-time asymptotics

From Fedorov et al. (1995), Kota (1994) and Webb et
(2000), the long time asymptotics féf can be obtained b
investigating the dispersion equation

D(k,s) =1~ (a/[1+ (1 —7/7L)a]) =0, (28)

associated with the singular eigensolutions of (26). In pal
ular, the diffusive behaviour of the solution follows from ti
large space-scalé (— 0) and long time § — 0) behaviour
of (28).

For example, consider the case of isotropic scattering{
7, ) for which D(k, s) = 1 — (a) = 0 is the singular mani-
fold. Using the expansion of the Bessel functions in (24)
|k1rgsinf] << 1, we obtain

- i (kyrysinf)? 4
Using (29), we find
(@) ~ —imy6 (L + 3 (K2 /4F) I2) (30)

for the approximate, pitch angle averaged value af long
wavelengths, where

11=11n<“0_1
1 9 pe—90—1
- 452{[1 (.uc 5) ]hl (M(;—é-i‘l

2 pe+1

)

te+d—1
+[1 = (pe +6)%]1 (W)
He — 1
2uubm(m+1)}
e =i6(5+ 1), 6= (kyrg) " (31)

From (30) and (31), the dispersion equatibik, s) = 1 —
(a) =0, for |s7| << 1 andkr, << 1 has the approximat
solution

s == (mykt + k1K) +0 (),

wherer | andx  are the parallel and perpendicular diffusi
coefficients in (9) forr; = 7, = 7. Equation (32) is the
dispersion equation for the diffusion equation obtained fr
(5), (8) and (9), but with no drift terms, since the backgrot
state is uniform.

On the other hand, |ki/l~c << 1, the I, term can be
dropped in (30), and the dlspersmn equation (28), has
approximate solution:

- 2 17.4,.2 6
The latter dispersion equation is equivalent to the equati
(34)

In the space-time domain, (34) becomes the telegraph €
tion of Gombosi et al. (1993). Clearly, to obtain an equ
alent telegraph equation including perpendicular diffusi
one needs to retain termxk? ) in (29).

(32)

(33)

%527 + s+ kﬁ/@H ~ 0.
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6 Pitch angle evolution and perpendicular diffusion

7 Concluding Remarks

It is instructive to consider the integral equation (19) underFrom the explicit solution foi, in (26), the complete so-

the assumption thak | r,| << 1, so that the approximation

lution for f(r, p,t) for the case of Dirac-delta initial data it

(29) for a applies. Equation (29) can be re-written in the position, pitch angle and gyro-phase, can be constructe(

form:

(V”/G_VJ_) fo :VH(F()—fo)—f—V”Q/CL. (35)
Using the usual Fourier space map

9] . .

— — —iw and V — ik, (36)

ot

and using the approximation (29) far (35) reduces to the
approximate, integro-differential evolution equation
9fo dfo
ot ez
(O +opud. +v1)  v?sin®6

_ 2
(O +vpd. + v )2+ Q2 2 Vifo

= I/H(FO — fo) + l/”}—_1 (%) ,

(37

whereV? = 92 + 85 is the Laplacian operator transverse

to the magnetic field, which is assumed to lie along the

Laplace-Fourier inversion, by first determinifg from (26),
and using the result to determirig from (19), and then ob-
tain f from (13), followed by Laplace and Fourier inversio
to determinef. A multiple scattering analysis (e.g. Webb «
al. 2000); eigenfunction/moment equation methods sha
reveal further aspects of the solution.

There are several outstanding issues raised by the al
analysis. For example, in a non-uniform background mi
netic field, there is a non-zero contribution to the diverger
of the particle current due to curvature and gradient drifts
sociated with the antisymmetric diffusion coefficient. It
is of interest to determine whether the effects of these dr
can be included in a pitch angle evolution equation ane
gous to (38) in this case. It is also of interest to investig;
higher order transport effects in the model, e.g. the incor
ration of cosmic ray inertial effects in telegraph type eqt
tions for cosmic ray transport including cross-field diffusio
that generalize the telegraph equation obtained by Goml
et al. (1993). Other aspects of cosmic ray transport the
that are raised by the analysis, concern the form of the p

axis, andF ! is the inverse Laplace and Fourier transform angle evolution equation obtained by Skilling (1975) for pt

operator.

Assuming thatf, evolves on much longer time scales than

71, 7 and the gyro-perio@r /€2 (i.e. |fo:/ fol << vi, vy

and2) and on space scales much larger than the mean fre€oSity;
pathsvr andv7,, then (37) can be approximated by the

equation:
dfo 0fo  vri(l—p?) s
ot +on 0z 202 +Q2) Vifo

=y (Fo — fo) + vy F (%) , (38)

which is the pitch angle evolution equation ffyrincorporat-

ing the effects of cross-field diffusion (thé? f, term).
Multiplying (38) by 27p? and integrating (38) over from

u = —1tou = 1, using the diffusion approximation, and

ticle transport in the solar wind, or its relativistic generaliz
tion (e.g. Webb, 1985) when cross field transport is includ
and the role of cross field transport effects on cosmic ray \
and non-inertial acceleration effects.
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