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Abstract. In this paper, we study a model of cosmic ray
diffusion based on a gyro-phase, and pitch-angle dependent
BGK Boltzmann model, involving two collision time scales
τ⊥ andτ‖ associated with scattering perpendicular and par-
allel to the background magnetic fieldB0. The time scaleτ⊥
describes the ironing out of gyro-phase anisotropies, and the
relaxation of the full gyro-phase distributionf to the gyro-
averaged distributionf0. The time scaleτ⊥ determines the
diffusion coefficientκ⊥, perpendicular to the mean magnetic
field, and the corresponding anti-symmetric diffusion coeffi-
cientκA associated with particle drifts. The time scaleτ‖ de-
scribes the relaxation of the pitch angle distributionf0 to the
isotropic distributionF0, and determines the parallel diffu-
sion coefficientκ‖. The Green function solution of the model
equation is obtained, for the case of delta function initial data
in position, pitch angle and gyro-phase, in terms of Fourier-
Laplace transforms. The solutions are used to discuss non-
diffusive and diffusive particle transport. The gyro-phase de-
pendent solutions exhibit cyclotron resonant behaviour, mod-
ified by resonance broadening due toτ⊥.

1 Introduction

Early work by Parker (1965) and Axford (1965) derived the
form of the diffusion tensor for cosmic rays in a random mag-
netic field, for the case of isotropic scattering. Forman et
al. (1974) used quasi-linear theory in slab turbulence to de-
termine the diffusion coefficients parallel (κ‖) and perpen-
dicular (κ⊥) to the mean magnetic fieldB0, as well as the
anti-symmetric component of the diffusion tensor,κA, asso-
ciated with particle drifts, for the case where the distribution
function could be expanded in spherical harmonics. Jokipii
(1971) and Hasselmann and Wibberenz (1970), pointed out
that the detailed dependence of the pitch angle diffusion co-
efficientDµµ onµ is important in determiningκ‖.
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2 The Model

The BGK Boltzmann equation for the momentum space dis-
tribution functionf(r,p, t), for particles with momentump,
(velocityv), at positionr at timet, in a uniform background
magnetic fieldB0 = (0, 0, B0)T along thez-axis, may be
written in the form:

∂f

∂t
+ v·∇f − Ω

∂f

∂φ
= −

(
f − f0

τ⊥
+
f0 − F0

τ‖

)
, (1)

where

f0 =
1

2π

∫ 2π

0

fdφ, F0 =
1
2

∫ 1

−1

f0 dµ, (2)

denote the gyro-phase averaged distribution function (f0),
and the isotropic component of the distribution function (F0)
in momentum space, andµ = cos θ is the pitch angle cosine.
The gyro-phase derivative term−Ωfφ, on the left-hand side
of (1), is the Lorentz force term, whereΩ = qB0/(mc) is
the particle gyro-frequency, andm is the relativistic particle
mass. Note that(v, θ, φ) are spherical polar coodinates for
the velocity, where the polar axis is alongB0. Kota (1993)
used a model similar to (1), except that he used a pitch angle
and gyro-phase diffusion term for the collision term.

3 The Diffusion Approximation

Following the approach of Kota (1993), we expand the dis-
tribution function in the series:

f =
∞∑

n=−∞
fn exp(inφ), (3)

wheref−n = f∗n. Multiplying the Boltzmann equation by
exp(−imφ), and integrating over the gyro-phaseφ fromφ =
0 to φ = 2π, yields the moment equations:

∂fm
∂t

+
v sin θ

2

(
∂fm−1

∂x
− i∂fm−1

∂y

)
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+
v sin θ

2

(
∂fm+1

∂x
+ i

∂fm+1

∂y

)
+v cos θ

∂fm
∂z
− imΩfm

= −[(fm − f0δ
m
0 )/τ⊥ + (f0 − F0)δm0 /τ‖], (4)

wherem = 0,±1,±2, . . ., and δij is the Kronecker delta
symbol. In particular, form = 0, (4) multiplied by2πp2 sin θ,
and integrated overθ from θ = 0 to θ = π, yields the number
density conservation equation:

Nt +∇·S = 0, (5)

whereN = p2
∫
fdΩ and S = p2

∫
vfdΩ are the parti-

cle number density and current, and the integrations overdΩ
are over solid angle in momentum space. In the diffusion
approximation, one uses the approximate moment balance
equations form = 0 andm = 1:

2πp2v

∫ π

0

dθ sin θ cos θ
(
v cos θ

∂f0

∂z
+
f0 − F0

τ‖

)
≈ 0, (6)

2πp2v

∫ π

0

dθ sin2 θ

(
v sin θ

2

(
∂f0

∂x
− i∂f0

∂y

)

−iΩf1 +
f1

τ⊥

)
≈ 0, (7)

to determine the diffusive currentS. The diffusion approxi-
mation, assumes that the scattering is strong enough to drive
the distribution function to a near isotropic state, and that the
effective scattering time is much shorter than the time scale
for the evolution ofF0. Using (6) and (7), it follows that the
diffusive current has the form:

S = −κ‖NzeB − κ⊥∇⊥N − κA∇N × eB , (8)

whereeB ≡ ez is the unit vector alongB0, and

κ‖ =
v2τ‖

3
, κ⊥ =

v2τ⊥
3(1 + Ω2τ2

⊥)
, κA = Ωτ⊥κ⊥. (9)

The expressons (9) forκ‖, κ⊥ andκA, have the same form
as Forman et al. (1974).

4 The Green Function

Introducing the Laplace-Fourier transform:

f̃(k,p, s) =
∫ ∞

0

dt

∫ ∞
−∞

d3r

(2π)3
exp(−st− ik·r)

f(r,p, t), (10)

the BGK Boltzmann equation (1) reduces to the ordinary dif-
ferential equation:

Ωf̃φ − (s+ ik·v + ν⊥)f̃ =

[−f̂(k,p, 0) + (ν‖ − ν⊥)f̃0 − ν‖F̃0], (11)

whereν‖ = 1/τ‖, ν⊥ = 1/τ⊥ andf̂(k,p, 0) is the Fourier
transform of the initial dataf(r,p, 0). For Dirac-delta initial
data, withf(r,p, 0) = Aδ(r − r0)δ(µ − µ0)δ(φ − φ0), we
obtain

f̂(k,p, 0) = [A/(2π)3] exp(−ik·r0)
δ(µ− µ0)δ(φ− φ0). (12)

Using (12) as the source term in (11), and integrating (11)
yields the solution:

f̃ = [ΩI(φ, θ)]−1{(ν‖F̃0 − (ν‖ − ν⊥)f̃0)×
×[I(2π, θ)/ζ − I(φ, θ)]}+Q, (13)

where

Q =
AI(φ0, θ0) exp(−ik·r0)δ(µ− µ0)

(2π)3ΩI(φ, θ)
×

×
(

1
ζ
−H(φ− φ0)

)
(14)

is the source term associated with the initial data (12). In
deriving (13) and (14), the anglesφ andφ0 are restricted to
the range[0, 2π], and the conditioñf(φ = 0) = f̃(φ = 2π)
is used to determine the integration constant. In (13) and (14)

I(φ, θ) = exp
(
−(s̄+ ν̄⊥ + ik‖rg cos θ)(φ− Φ)

−ik⊥rg sin θ sin(φ− Φ)
)
, (15)

is the integrating factor for (11), where we use the notation
s̄ = s/Ω, ν̄⊥ = ν⊥/Ω, ν̄‖ = ν‖/Ω and

I(θ, φ) =
∫ φ

0

I(φ′, θ)dφ′,

ζ = 1− exp[−2π(ν̄⊥ + s̄+ ik‖rg cos θ)]. (16)

In (14)-(16),(k,Θ,Φ) are spherical polar coordinates fork,
with polar axis alongB0; k‖ = k cos Θ andk⊥ = k sin Θ
andH(x) is the Heaviside step function. Equation (13) can
be regarded as an integral equation forf̃ , and is a central
result in the analysis.

By using the standard generating function identity for Bessel
functions (e.g. Abramowitz and Stegun, 1965, p. 361, for-
mula 9.1.41) we obtain

I(φ, θ) =
∞∑

n=−∞

Jn(k⊥rg sin θ)
s̄+ ν̄⊥ + i(k‖rg cos θ + n)

×

× exp[(s̄+ ν̄⊥ + ik‖rg cos θ + in)Φ]×
×{1− exp(−[s̄+ ν̄⊥ + ik‖rg cos θ + in]φ)}, (17)

for I(φ, θ) whererg = pc/(qB0) is the particle gyro-radius
andJn(x) is a Bessel function of the first kind of ordern
and argumentx. By noting thats̄ = s/Ω, and settings =
−iω, one finds that the denominator of thenth term in (17),
s̄+ ν̄⊥ + i(k‖rg cos θ + n) = 0 when

ω − k‖vµ = nΩ− iν⊥, (n integer), (18)

whereµ = cos θ. Thus the pole for the term indexed by
n in the series (17) corresponds to the cyclotron resonance
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conditionω − k‖vµ = nΩ broadened by scattering due to
ν⊥.

Averaging (13) over gyro-phaseφ yields the integral equa-
tion

f̃0 = (aF̃0 + Q̄)/[1 + (1− τ‖/τ⊥)a], (19)

relatingf̃0 andF̃0 whereQ̄ =
∫ 2π

0
Qdφ/(2π). The function

a in (19) can be expressed in the form:

a = ν̄‖

∞∑
n=−∞

J2
n(k⊥rg sin θ)

s̄+ ν̄⊥ + i(k‖rg cos θ + n)
. (20)

The source term̄Q in (19) can be expressed in the form:

Q̄ = −AI(φ0, θ0) exp(−ik·r0)
(2π)4Ω

Q̂, (21)

where

Q̂ = exp[−(s̄+ ν̄⊥ + ik‖rg cos θ)]×

×
∞∑

n=−∞

Jn(k⊥rg sin θ) exp(−inΦ)
s̄+ ν̄⊥ + i(k‖rg cos θ + n)

×

×{1 + exp[2π(s̄+ ν̄⊥ + ik‖rg cos θ)]
− exp[φ0(s̄+ ν̄⊥ + ik‖rg cos θ)]}. (22)

Again note the singularities in (20) and (22) at the cyclotron
resonances (18).

By using the Newberger sum rule (NewBerger, 1982):

∞∑
n=−∞

J2
n(z)
n+ χ

=
πJχ(z)J−χ(z)

sin(πχ)
, (23)

in (20), we obtain

a = iν̄‖
πJχ(k⊥rg sin θ)J−χ(k⊥rg sin θ)

sin(πχ)
, (24)

as an alternative, more compact expression fora, where

χ =
(ω − k‖vµ+ iν⊥)

Ω
, (25)

is the normalized Doppler shifted frequencyω relative to the
particle, taking into account perpendicular scattering.

Averaging (19) over the pitch angle cosineµ, yields a sim-
ple algebraic equation for̃F0 with solution

F̃0 =
〈Q̄/[1 + (1− τ‖/τ⊥)a]〉

1− 〈a/[1 + (1− τ‖/τ⊥)a]〉
, (26)

where the angular brackets in (26) denote an average overµ.
For the case of isotropic scattering (τ⊥ = τ‖) (26) simplifies
to

F̃0 =
〈Q̄〉

1− 〈a〉
. (27)

5 Long-scale, large-time asymptotics

From Fedorov et al. (1995), Kota (1994) and Webb et al.
(2000), the long time asymptotics forF0 can be obtained by
investigating the dispersion equation

D(k, s) = 1− 〈a/[1 + (1− τ‖/τ⊥)a]〉 = 0, (28)

associated with the singular eigensolutions of (26). In partic-
ular, the diffusive behaviour of the solution follows from the
large space-scale (k → 0) and long time (s → 0) behaviour
of (28).

For example, consider the case of isotropic scattering (τ‖ =
τ⊥) for whichD(k, s) = 1 − 〈a〉 = 0 is the singular mani-
fold. Using the expansion of the Bessel functions in (24) for
|k⊥rg sin θ| << 1, we obtain

a ≈ i
ν̄‖

χ

(
1 +

(k⊥rg sin θ)2

2(χ2 − 1)
+O

[
(k⊥rg)

4
])

. (29)

Using (29), we find

〈a〉 ≈ −iν̄‖δ
(
I1 + 1

2

(
k2
⊥/k

2
‖

)
I2

)
, (30)

for the approximate, pitch angle averaged value ofa at long
wavelengths, where

I1 =
1
2

ln
(
µc − 1
µc + 1

)
,

I2 =
1

4δ2

{
[1− (µc − δ)2] ln

(
µc − δ − 1
µc − δ + 1

)
+[1− (µc + δ)2] ln

(
µc + δ − 1
µc + δ + 1

)
−2(1− µ2

c) ln
(
µc − 1
µc + 1

)}
,

µc = iδ(s̄+ ν̄⊥), δ = (k‖rg)−1. (31)

From (30) and (31), the dispersion equationD(k, s) = 1 −
〈a〉 = 0, for |sτ | << 1 andkrg << 1 has the approximate
solution

s = −
(
κ‖k

2
‖ + κ⊥k

2
⊥

)
+O

(
k4
)
, (32)

whereκ‖ andκ⊥ are the parallel and perpendicular diffusion
coefficients in (9) forτ‖ = τ⊥ = τ . Equation (32) is the
dispersion equation for the diffusion equation obtained from
(5), (8) and (9), but with no drift terms, since the background
state is uniform.

On the other hand, ifk2
⊥/k

2
‖ << 1, the I2 term can be

dropped in (30), and the dispersion equation (28), has the
approximate solution:

s ≈ −
(
k2
‖κ‖ + 1

5k
4
‖κ

2
‖τ
)

+O
(
k6
‖

)
. (33)

The latter dispersion equation is equivalent to the equation:
1
5s

2τ + s+ k2
‖κ‖ ≈ 0. (34)

In the space-time domain, (34) becomes the telegraph equa-
tion of Gombosi et al. (1993). Clearly, to obtain an equiv-
alent telegraph equation including perpendicular diffusion,
one needs to retain termsO(k4

⊥) in (29).
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6 Pitch angle evolution and perpendicular diffusion

It is instructive to consider the integral equation (19) under
the assumption that|k⊥rg| << 1, so that the approximation
(29) for a applies. Equation (29) can be re-written in the
form:(
ν‖/a− ν⊥

)
f̃0 = ν‖(F̃0 − f̃0) + ν‖Q̃/a. (35)

Using the usual Fourier space map

∂

∂t
→ −iω and ∇ → ik, (36)

and using the approximation (29) fora, (35) reduces to the
approximate, integro-differential evolution equation

∂f0

∂t
+ vµ

∂f0

∂z

− (∂t + vµ∂z + ν⊥)
(∂t + vµ∂z + ν⊥)2 + Ω2

v2 sin2 θ

2
∇2
⊥f0

= ν‖(F0 − f0) + ν‖F−1

(
Q̃

a

)
, (37)

where∇2
⊥ = ∂2

x + ∂2
y is the Laplacian operator transverse

to the magnetic field, which is assumed to lie along thez-
axis, andF−1 is the inverse Laplace and Fourier transform
operator.

Assuming thatf0 evolves on much longer time scales than
τ⊥, τ‖ and the gyro-period2π/Ω (i.e. |f0t/f0| << ν⊥, ν‖
andΩ) and on space scales much larger than the mean free
pathsvτ‖ and vτ⊥, then (37) can be approximated by the
equation:

∂f0

∂t
+ vµ

∂f0

∂z
− v2ν⊥(1− µ2)

2(ν2
⊥ + Ω2)

∇2
⊥f0

= ν‖(F0 − f0) + ν‖F−1

(
Q̃

a

)
, (38)

which is the pitch angle evolution equation forf0 incorporat-
ing the effects of cross-field diffusion (the∇2

⊥f0 term).
Multiplying (38) by2πp2 and integrating (38) overµ from

µ = −1 to µ = 1, using the diffusion approximation, and
neglecting the source, or initial value term in (38) results in
the usual diffusion equation (5) in the form:

∂N

∂t
+

∂

∂z

(
−κ‖

∂N

∂z

)
+∇⊥·(−κ⊥∇⊥N) = 0, (39)

whereκ⊥ andκ‖ are given by (9). In the derivation of (39)
it is also necessary to take the first moment of (38) (i.e. mul-
tiply (38) by 2πp2vµ and integrate overµ from µ = −1 to
µ = 1, and use the diffusion approximation to find the diffu-
sive streaming parallel to the field). It is clear that accurate
approximate solutions of (38) can be obtained by expanding
the distribution function in terms of Legendre polynomials,
and taking moments of (38) (e.g., Gombosi et al. 1993; Lu et
al., 2001).

7 Concluding Remarks

From the explicit solution forF̃0 in (26), the complete so-
lution for f(r,p, t) for the case of Dirac-delta initial data in
position, pitch angle and gyro-phase, can be constructed by
Laplace-Fourier inversion, by first determining̃F0 from (26),
and using the result to determinẽf0 from (19), and then ob-
tain f̃ from (13), followed by Laplace and Fourier inversion
to determinef . A multiple scattering analysis (e.g. Webb et
al. 2000); eigenfunction/moment equation methods should
reveal further aspects of the solution.

There are several outstanding issues raised by the above
analysis. For example, in a non-uniform background mag-
netic field, there is a non-zero contribution to the divergence
of the particle current due to curvature and gradient drifts as-
sociated with the antisymmetric diffusion coefficientκA. It
is of interest to determine whether the effects of these drifts
can be included in a pitch angle evolution equation analo-
gous to (38) in this case. It is also of interest to investigate
higher order transport effects in the model, e.g. the incorpo-
ration of cosmic ray inertial effects in telegraph type equa-
tions for cosmic ray transport including cross-field diffusion,
that generalize the telegraph equation obtained by Gombosi
et al. (1993). Other aspects of cosmic ray transport theory
that are raised by the analysis, concern the form of the pitch
angle evolution equation obtained by Skilling (1975) for par-
ticle transport in the solar wind, or its relativistic generaliza-
tion (e.g. Webb, 1985) when cross field transport is included,
and the role of cross field transport effects on cosmic ray vis-
cosity, and non-inertial acceleration effects.
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