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Abstract. We present numerical solutions of a two dimen-
sional, self consistent model of cosmic ray modified, super-
nova remnant shocks developed by Zakharian (2000). The
equations of the model consist of the Parker transport equa-
tion for the energetic particle momentum distribution func-
tion, f , including convection, anisotropic diffusion, drifts,
and adiabatic energy changes. The transport equation is cou-
pled self consistently, with the equations of ideal magnetohy-
drodynamics (MHD) describing the thermal plasma, but suit-
ably modified to take into account injection at the shock, and
with an extra force−∇pc, exerted by the cosmic ray pressure
pc in the momentum equation for the system. The model in-
corporates anisotropic diffusion of the cosmic rays, includ-
ing diffusion parallel (κ‖), and perpendicular (κ⊥) to the
mean magnetic field, and the role of particle drifts due to the
anti-symmetric diffusion coefficientκA. For the case of an
initially uniform background magnetic field, the anisotropic
diffusion of the cosmic rays leads to an anisotropic spatial
distribution of thermal plasma, cosmic rays and magnetic
field. The shock is quasi-parallel over the poles (θ = 0◦),
and quasi-perpendicular near the equator (θ = 90◦), where
θ = 0◦ corresponds to the initial magnetic field direction.
The evolution of the SNR shock, and the momentum distri-
bution f(r, p, t) of the energetic particles are investigated.
The dependence of the solutions and acceleration rate at the
shock on the parameterη = κ⊥/κ‖ and the shock obliquity
θ are studied in detail.

1 Introduction

The earlier numerical work on diffusive shock acceleration
used simplified one dimensional fluid model description of
the cosmic rays (Jones and Kang (1990), Dorfi (1990)) or
transport equation models in either plane shock (Falle and
Giddings (1987)) or test-particle approximation (Jokipii and
Ko (1987)). These and other numerous studies, suggested
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that diffusive shock acceleration could convert around 10-
15% of the SNR kinetic energy into cosmic ray energy.

More physically realistic models have been used in the
numerical investigation of diffusive particle acceleration in
spherical SNR shocks (Kang and Jones, 1991; Berezhko et
al., 1996). Direct numerical solution of the transport equa-
tion with constant and weakly momentum dependent (κ ∼
p1/4) diffusion coefficient models in Kang and Jones (1991)
suggested that cosmic rays can absorb as much as 30% of the
explosion kinetic energy, and indicated that a power law with
slope∼ 4.3 may be established up to the energies of1014 eV.
Berezhko et al. (1996) investigated the problem with the mo-
mentum dependent diffusion coefficientκ ∼ p which cor-
responds to the Bohm limit for high energy particles. This
regime is characterized by small diffusion coefficients at low
energies, when the mean free path of the particle is compara-
ble to the gyroradius, and can be expected if the region near
the shock front is highly turbulent. Depending on the injec-
tion rate, 20-50% of total blast energy can be transfered to
cosmic rays.

Previous studies considered one dimensional, planar or sph-
erical hydrodynamic shocks, with an inherent assumption
that the turbulence scattering the particles was sufficiently
strong that an isotropic diffusion model could be used. We
use a new self-consistent, coupled MHD and particle trans-
port code to follow the evolution of cosmic ray modified
shocks in two spatial dimensions. Multi-level solution adap-
tive mesh refinement provides enhanced resolution around
the shock wave. This allows us to consider particle transport
both parallel and perpendicular to the field lines.

2 The model

To investigate diffusive acceleration of particles in two di-
mensional supernova shocks, we model the plasma dynam-
ics using the ideal MHD equations coupled to the diffusive
cosmic ray transport equation. The cosmic rays are assumed
to be a hot, low density gas with a significant pressure, but
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with a negligible mass flux. The isotropic distribution func-
tion f(r, p, t) for the cosmic rays at positionr, momentump
at timet satisfies the diffusive cosmic ray transport equation
(Krymskii, 1964; Parker, 1965; Skilling, 1975):

∂f

∂t
+ (u + Vd) · ∇f −∇(κ∇f)− 1

3
∇ · u ∂f

∂ ln p
= Q, (1)

whereu is background plasma velocity;κ is the symmet-
ric energetic particle diffusion tensor including the effects of
anisotropic diffusion parallel and perpendicular to the back-
ground magnetic fieldB,

Vd = ∇×
(
κA

B
B

)
, (2)

is the effective drift velocity of the particles, andκA is the an-
tisymmetric component of the diffusion tensor (in the weak
scattering limitκA = vrg/3, wherev and rg are particle
speed and gyroradius). The termQ on the right hand side
of (1) represents injection of particles from thermal pool. It
is sufficient to consider a distribution function that describes
only protons, the dominant species of the ionized component
in the interstellar medium.

The cosmic rays in the model are coupled self-consistently
with the equations for the background plasma flow:

∂ρ

∂t
+∇ · (ρu) = 0, (3)

∂u
∂t

+ u · ∇u = −∇(pg + pc)
ρ

+
(∇×B)×B

µρ
, (4)

∂pg
∂t

+ u · ∇pg + γgpg∇ · u = (γg − 1)S, (5)

∂B
∂t

= ∇× (u×B), (6)

∇ ·B = 0. (7)

The above equations consist of: the mass continuity equa-
tion for the thermal gas (3); the total momentum equation for
the system (4), in which the cosmic rays modify the back-
ground flow by their pressure gradient−∇pc; the co-moving
gas energy equation (5) is written in terms of the gas pres-
surepg and gas adiabatic indexγg, and the loss termS on
the right hand side of (5) represents the loss of energy of the
thermal gas to the cosmic rays due to injection; Maxwell’s
equations in the MHD limit, namely Faraday’s law (6) and
Gauss’s equation (7) governing the magnetic field induction
B. In (4), the cosmic ray pressurepc is related to the ener-
getic particle distribution function by the equation

pc =
4πc
3

∫ ∞
pl

dp
p4f√

p2 +m2c2
, (8)

wherepl is a lower boundary in momentum space defining
the cosmic ray gas. Particles with momentump > pl are re-
garded as cosmic-ray particles satisfying the diffusive trans-
port equation (1), whereas particles with momentap < pl
comprise the thermal plasma. The injection termQ and en-
ergy change termS are related by:

Q = −1
3
pinjf(r, pinj , t)∇ · uδ(p− pinj), (9)

Fig. 1. AMR grid structure evolution,t/t0 = 1.0, 4.5, 8.0.

S =
4π
3

(p3Tf)p=pinj∇ · u,

wherepinj and Tinj are the injection momentum and ki-
netic energy of the particles. We follow Falle and Giddings
(1987) and set∇ · u = (u1 − u2)δ(r − rsh) at the sub-
shock. In the present work we use the injection speedvinj =
ξvsh(κ‖/κnn)1/2, whereκnn is the effective diffusion coef-
ficient normal to the shock surface,vsh is the shock speed
andξ is a parameter of order unity. This estimate can be con-
sidered as a lower limit on the injection rate, that neglects
pre-acceleration processes, which can enhance the particle
distribution at low energies above the value expected from
a Maxwellian distribution. More realistic injection models
(Malkov and V̈olk, 1995; Gieseler et al., 1999) can be incor-
porated into the model, but will not be considered here.

3 Numerical Method

Equations (1) and (3)-(7) are discretized in spherical polar
(r, θ) coordinate system using a Riemann solver for the MHD
equations with enforced∇ ·B = 0 condition, and Alternat-
ing Direction Implicit scheme coupled with second-order up-
wind wave-propagation algorithm for the transport equation.

Accurate solution of the particle transport equation requires
resolution of the small diffusion scales associated with the
lowest energy particles. The advantage of having a locally re-
fined grid near the shock was recognized by Dorfi and Drury
(1987) in a work that used a 1-D two-fluid, cosmic-ray hy-
drodynamical model to compute the evolution of a spheri-
cal supernova remnant shock. Their approach used a partial
differential equation to evolve the grid point distribution ac-
cording to the gradients in the flow. Duffy (1994) used a
local grid refinement to compute evolution of the cosmic-ray
distribution function for 1-D planar shocks, and for a simi-
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lar model Kang et al. (2001) used block adaptive mesh re-
finement (AMR) and a shock tracking method to capture the
shock wave without intermediate transition points.

The discretized equations are evolved in time using a so-
lution adaptive AMR grid hierarchy (Berger and LeVeque,
1998) that provides high spatial resolution near the shock.
Figure 1 illustrates the evolution of the AMR grid structure
in the vicinity of the shock. Flux functions are used to coordi-
nate solutions at neighboring grid levels to ensure numerical
conservation of physically conserved quantities. The code
is parallelized using Message Passing Interface, suitable for
distributed memory systems.

The MHD part of the code was tested on a number of prob-
lems, including MHD blast wave, Orzag-Tang MHD vortex
problem and exact self-similar solutions. The transport equa-
tion solver was validated against exact solutions in the test-
particle limit, and against numerical solutions of the cosmic
ray acceleration problem in spherically symmetric shocks
with zero magnetic field reported by Kang and Jones (1991).

4 Computational Results

The initial condition for the plasma state is specified as a
self-similar spherical Sedov blast wave. We useγg = 5/3,
the energy of explosion is taken to beE = 1051 erg, and the
interstellar density and pressure are set toρ0 = 7 × 10−27

g cm−3 and pg0 = 10−12 dyne cm−2 respectively. The
solution is initialized at the time corresponding to the onset
of the Sedov-Taylor phase,t0 = 6.1 × 103 yrs, when the
shock wave has expanded to the distance ofr0 = 28.5 pc.
The magnetic field strength upstream of the shock is chosen
to beB0 = 5 µG. The shock is a parallel shock over the
poles(θ = 0), and a perpendicular shock at the equator(θ =
π/2). The initial condition for the distribution function is
f(r, p, 0) = 0.

In the calculations, the diffusion coefficientsκ‖ andκ⊥,
parallel and perpendicular to the magnetic field are taken as
independent of momentum, in order to reduce computational
time. In particular we takeκ‖ = κ‖0B0/|B| andκ⊥ = ηκ‖
whereη is a constant (η < 1). We takeκ‖0 = 1.6 × 1025

cm2s−1. Since the magnetic field has no azimuthal compo-
nent, there are no drift effects in the 2D model. Drift effects
can play a role ifBφ 6= 0.

In the test particle limit, the evolution of the SNR shock
wave is dominated by the flow kinetic energy. The angle
between the shock normal and the upstream magnetic field
B, increases continuously from pole(θ = 0) to equator
(θ = π/2), and therefore the magnetic field pressure down-
stream is largest at the equator, for the perpendicular shock
configuration. When the shock expands to∼ 75 pc, mag-
netic stresses become strong enough to influence flow dy-
namics. This leads to a non-spherical shock, in which the
compression ratiorc is larger at the pole than at the equator
(rcp = 3.4 andrce = 2.9).

When the cosmic ray back-reaction on the thermal com-
ponent of the plasma is taken into account, the shock wave

Fig. 2. Cosmic ray pressure (contour lines) and velocity field (vec-
tors) in SNR shock att/t0 = 2.0 and 5.0.η = 0.5.

structure is modified. The effect is strongest at the equator,
where the shock normal is perpendicular to the magnetic field
lines and diffusion in the radial direction is governed byκ⊥.
Figure 2 shows the evolution of the cosmic ray pressure at
the shock for the ratioη = κ⊥/κ‖ = 0.5 andvinj dependent
only on the shock speed. Figure 3 shows the radial variation
of pc andpg in the vicinity of the shock at timet/t0 = 4,
both at the equator (θ = π/2) and at the pole (θ = 0), for
models with differentη. The cosmic ray pressure is the dom-
inant pressure at the equator (pc/pg ∼ 3), whereas the gas
pressure dominates at the pole (pc/pg ∼ 1

3 ).
Figure 4 illustrates the evolution of the energetic particle

distribution function at the shock both at the pole and at the
equator at timest/t0 = 1.75, 2.5 and 4.0, for the case where
injection speed is given byvinj = ξvsh(κ‖/κnn)1/2. The
injection is parametrised in terms of the parameter

ε =
4πp3

injf(r, pinj , t)
ρ0/mp

rc − 1
3rc

. (10)

The diffusion coefficient was taken as independent ofp and
the ratioκ⊥/κ‖ = 0.2. As shown in Figure 4, the accelera-
tion rate is faster at the equator whereκnn = κ⊥, than at the
pole, whereκnn = κ‖. A similar result was obtained in the
test particle simulations of Jokipii and Ko (1987), (see also
Jokipii (1987)) who pointed out that the particle acceleration
rate is significantly faster in quasi-perpendicular shocks than
in quasi-parallel shocks, ifη << 1.

Note that the distribution function is an order of magnitude
smaller at the equator than at the poles. This is a consequence
of the fact that the injection speed is substantially larger at the
equator than at the poles, and the assumed Maxwellian form
of the distribution function at the injection energy.
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Fig. 3. Cosmic-ray and thermal pressure att/t0 = 4.0 for models
with η = 0.5 (solid line),η = 0.2 (dashed line),η = 0.1 (dotted
line).

5 Concluding Remarks

It is clear from Figure 4 that the magnetic field geometry and
η = κ⊥/κ‖ will play an important role in determining the
maximum energy obtained by the accelerated particles near
the shock, depending on the phase of evolution of the rem-
nant. For example, in the lower panel in Figure 4, the break
in the spectrum att = t2 = 1.525 × 104 years at the shock
in the equatorial region (θ = π/2, rsh ∼ 45 pc), occurs at
p = pb ≈ 102mc = 93.8 GeV/c, whereas at the pole (θ = 0),
the corresponding break occurs atpb ≈ 10−1.5 mc = 29.6
MeV. Thus, the particles are accelerated to∼ 103.5 greater
energies at the equator than at the poles. This difference in
the increased acceleration rate at quasi-perpendicular shocks
is well known in test particle acceleration theory (e.g. Jokipii
(1987), Jokipii and Ko (1987)), but current, spherically sym-
metric models of cosmic ray modified SNR shocks cannot
accomodate these effects. Our model shows that anisotropic
diffusion is important in the fully nonlinear theory. The dif-
ference in the acceleration rates at the pole and equator has
important implications for synchrotron and radio emission
from SNR remnant shocks (e.g. Reynolds and Ellison (1991);
Ratkiewicz et al (1994)), and also for gamma ray emission
from SNR remnants (e.g. Baring et al., (1999)).

It is of interest to extend the present calculations to in-
clude more realistic diffusion coefficients that increase with
the particle energy (e.g.κ‖ ∝ p

1
3 v/c for Kolmogorov turbu-

lence, orκ ∝ pv/c for Bohm diffusion).
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