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Self consistent particle acceleration in 2D supernova remnant shocks
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Abstract. We present numerical solutions of a two dimen- that diffusive shock acceleration could convert around
sional, self consistent model of cosmic ray modified, super-15% of the SNR kinetic energy into cosmic ray energy.
nova remnant shocks developed by Zakharian (2000). The More physically realistic models have been used in
equations of the model consist of the Parker transport equanaumerical investigation of diffusive particle acceleratior
tion for the energetic particle momentum distribution func- spherical SNR shocks (Kang and Jones, 1991; Berezh
tion, f, including convection, anisotropic diffusion, drifts, al., 1996). Direct numerical solution of the transport ec
and adiabatic energy changes. The transport equation is cotion with constant and weakly momentum dependant(
pled self consistently, with the equations of ideal magnetohy-p!/4) diffusion coefficient models in Kang and Jones (19
drodynamics (MHD) describing the thermal plasma, but suit-suggested that cosmic rays can absorb as much as 30%
ably modified to take into account injection at the shock, andexplosion kinetic energy, and indicated that a power law
with an extra force-Vp,, exerted by the cosmic ray pressure slope~ 4.3 may be established up to the energies@f eV.
Pc in the momentum equation for the system. The model in-Berezhko et al. (1996) investigated the problem with the
corporates anisotropic diffusion of the cosmic rays, includ-mentum dependent diffusion coefficiemt~ p which cor-
ing diffusion parallel ), and perpendiculars(.) to the responds to the Bohm limit for high energy particles. 1
mean magnetic field, and the role of particle drifts due to theregime is characterized by small diffusion coefficients at
anti-symmetric diffusion coefficient4. For the case of an energies, when the mean free path of the particle is com
initially uniform background magnetic field, the anisotropic ble to the gyroradius, and can be expected if the region
diffusion of the cosmic rays leads to an anisotropic spatialthe shock front is highly turbulent. Depending on the in]
distribution of thermal plasma, cosmic rays and magnetiction rate, 20-50% of total blast energy can be transfere
field. The shock is quasi-parallel over the polés={ 0°), cosmic rays.

and quasi-perpendicular near the equafor=(90°), where Previous studies considered one dimensional, planar ¢
¢ = 0° corresponds to the initial magnetic field direction. erical hydrodynamic shocks, with an inherent assumg
The evolution of the SNR shock, and the momentum distri-that the turbulence scattering the particles was sufficie
bution f(r,p,t) of the energetic particles are investigated. strong that an isotropic diffusion model could be used.
The dependence of the solutions and acceleration rate at thgse a new self-consistent, coupled MHD and particle tr
shock on the parameter= « ; /x| and the shock obliquity  port code to follow the evolution of cosmic ray modifi
¢ are studied in detail. shocks in two spatial dimensions. Multi-level solution ad
tive mesh refinement provides enhanced resolution ar
the shock wave. This allows us to consider particle trans
both parallel and perpendicular to the field lines.

1 Introduction

The earlier numerical work on diffusive shock acceleration

used simplified one dimensional fluid model description of2 The model

the cosmic rays (Jones and Kang (1990), Dorfi (1990)) or__ . . e . . .

transport equation models in either plane shock (Falle andr 0 myestlgate diffusive acceleration of particles in two

Giddings (1987)) or test-particle approximation (Jokipii and _rnenS|_onaI supernova shocks, we model the plasma_ dy

Ko (1987)). These and other numerous studies, suggeste'&S using the ideal MHD equauons coupl_ed to the diffu
cosmic ray transport equation. The cosmic rays are ass

Correspondence toG.M. Webb (gwebb@lpl.arizona.edu) to be a hot, low density gas with a significant pressure,
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with a negligible mass flux. The isotropic distribution func-
tion f(r, p, t) for the cosmic rays at positian momentunp

at timet satisfies the diffusive cosmic ray transport equation
(Krymskii, 1964; Parker, 1965; Skilling, 1975):

of of

ot Olnp =@ @

whereu is background plasma velocity; is the symmet-
ric energetic particle diffusion tensor including the effects of
anisotropic diffusion parallel and perpendicular to the back-
ground magnetic fieldB,
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is the effective drift velocity of the particles, ard is the an-
tisymmetric component of the diffusion tensor (in the weak
scattering limitx 4 = wvr,/3, wherev andr, are particle
speed and gyroradius). The texghon the right hand side
of (1) represents injection of particles from thermal pool. It
is sufficient to consider a distribution function that describes

Vd=V><<
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only protons, the dominant species of the ionized componenFig. 1. AMR grid structure evolutior,/t, = 1.0, 4.5, 8.0.

in the interstellar medium.

The cosmic rays in the model are coupled self-consistently

with the equations for the background plasma flow:
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The above equations consist of: the mass continuity equ
tion for the thermal gas (3); the total momentum equation for
the system (4), in which the cosmic rays modify the back-
ground flow by their pressure gradiea¥p..; the co-moving

_Am
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where p;,,; andT;,; are the injection momentum and }
netic energy of the particles. We follow Falle and Giddir
(1987) and seV - u = (u; — u2)d(r — rg,) at the sub-
shock. In the present work we use the injection spegf=

fvsh(n”/mnn)l/Q, wherek,,, is the effective diffusion coef
ficient normal to the shock surface,,, is the shock spee
and¢ is a parameter of order unity. This estimate can be
sidered as a lower limit on the injection rate, that negle
pre-acceleration processes, which can enhance the p:
distribution at low energies above the value expected f
a Maxwellian distribution. More realistic injection mode
(Malkov and \blk, 1995; Gieseler et al., 1999) can be inc
porated into the model, but will not be considered here.

S (pBTf)p:pmjv " u,

gas energy equation (5) is written in terms of the gas pres-

surep, and gas adiabatic indey,;, and the loss tern$ on 3 Numerical Method

the right hand side of (5) represents the loss of energy of the

thermal gas to the cosmic rays due to injection; Maxwell's Equations (1) and (3)-(7) are discretized in spherical p
equations in the MHD limit, namely Faraday’s law (6) and (r, §) coordinate system using a Riemann solver for the M
Gauss's equation (7) governing the magnetic field inductionequations with enforce¥ - B = 0 condition, and Alternat

B. In (4), the cosmic ray pressufe is related to the ener-
getic particle distribution function by the equation

dme [ ptf
Pec = 3 dp
D1

wherep, is a lower boundary in momentum space defining

; 8
/p2 + mQCQ
the cosmic ray gas. Particles with momentuns p; are re-

ing Direction Implicit scheme coupled with second-order
wind wave-propagation algorithm for the transport equat

Accurate solution of the particle transport equation reqr
resolution of the small diffusion scales associated with
lowest energy particles. The advantage of having a locall
fined grid near the shock was recognized by Dorfi and D
(1987) in a work that used a 1-D two-fluid, cosmic-ray |

garded as cosmic-ray particles satisfying the diffusive trans-drodynamical model to compute the evolution of a sph

port equation (1), whereas particles with momenta p;
comprise the thermal plasma. The injection tepnand en-
ergy change terns are related by:

1
Q = _gpinjf(r»pinja t)v : 115(]) - pi”j)7 (9)

cal supernova remnant shock. Their approach used a p
differential equation to evolve the grid point distribution ¢
cording to the gradients in the flow. Duffy (1994) uses
local grid refinement to compute evolution of the cosmic-
distribution function for 1-D planar shocks, and for a sir
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lar model Kang et al. (2001) used block adaptive mesh re- log(P./P.)
finement (AMR) and a shock tracking method to capture the 2.5 b‘ L
shock wave without intermediate transition points. o

The discretized equations are evolved in time using a so-
lution adaptive AMR grid hierarchy (Berger and LeVeque,
1998) that provides high spatial resolution near the shock.
Figure 1 illustrates the evolution of the AMR grid structure
in the vicinity of the shock. Flux functions are used to coordi-
nate solutions at neighboring grid levels to ensure numerical
conservation of physically conserved quantities. The code
is parallelized using Message Passing Interface, suitable for
distributed memory systems.

The MHD part of the code was tested on a number of prob-
lems, including MHD blast wave, Orzag-Tang MHD vortex
problem and exact self-similar solutions. The transport equa-
tion solver was validated against exact solutions in the test-
particle limit, and against numerical solutions of the cosmic
ray acceleration problem in spherically symmetric shocks
with zero magnetic field reported by Kang and Jones (1991).

4 Computational Results Fig. 2. Cosmic ray pressure (contour lines) and velocity field (\
tors) in SNR shock at/t, = 2.0 and 5.0n = 0.5.

The initial condition for the plasma state is specified as a

self-similar spherical Sedov blast wave. We uge= 5/3, . . .

the energy of explosion is taken to Be= 10°! erg, and the structure is modified. The effect is strongest at the equ

interstellar density and pressure are sepdo= 7 x 1027 where the shock normal is perpendicular to the magnetic

g em™3 andp,, = 10712 dyne cm~2 respectively. The lines and diffusion in the radial direction is governed+y.

solution is initialized at the time corresponding to the onsetF19Ure 2 shows the evolution of the cosmic ray pressu
of the Sedov-Taylor phasés = 6.1 x 10° yrs, when the  the shock for the ratiq = r1 /K| = 0.5 anduiy,; dependen
shock wave has expanded to the distance,0f 28.5 pc. ~ Only on the shock speed. Figure 3 shows the radial vari
The magnetic field strength upstream of the shock is choseff P @ndpg in the vicinity of the shock at time/t, = 4,
to be By = 5 uG. The shock is a parallel shock over the POth at the equato(= 7/2) and at the poled = 0), for
poles(# = 0), and a perpendicular shock at the equétos models with different). The cosmic ray pressure is the do
7/2). The initial condition for the distribution function is inant pressure at the equatgr. (p, ~ 3), whereas the g
F(r,p,0) = 0. pressure dominates at the pate fp, ~ %).

In the calculations. the diffusion coefficients and ., Figure 4 illustrates the evolution of the energetic part

parallel and perpendicular to the magnetic field are taken aglstrlbutmn _functlon at the shock both at the pole and al
independent of momentum, in order to reduce computationa]ac?|uat,Or at tlmes/to = 1.75,2.5and 4.0, for the S{;\se wh
time. In particular e take, — o Bo/|B| ands , — ) injection speed is given by,; = vsn (k) /kan)'/?. The
wherer is a constantif < 1). We taker = 1.6 x 102 injection is parametrised in terms of the parameter
em?s~t. Since the magnetic field has no azimuthal compo-
nent, there are no drift effects in the 2D model. Drift effects ¢ =
can play arole ifB4 # 0.

In the test particle limit, the evolution of the SNR shock The diffusion coefficient was taken as independent ahd
wave is dominated by the flow kinetic energy. The anglethe ratiox /x| = 0.2. As shown in Figure 4, the accelel
between the shock normal and the upstream magnetic fieltion rate is faster at the equator whetg, =  , than at the
B, increases continuously from pol@ = 0) to equator pole, wheres,,,, = k|- A similar result was obtained in tf
(8 = w/2), and therefore the magnetic field pressure down-test particle simulations of Jokipii and Ko (1987), (see
stream is largest at the equator, for the perpendicular shocBokipii (1987)) who pointed out that the particle accelera
configuration. When the shock expands~o75 pe, mag-  rate is significantly faster in quasi-perpendicular shocks
netic stresses become strong enough to influence flow dyin quasi-parallel shocks, if << 1.
namics. This leads to a non-spherical shock, in which the Note that the distribution function is an order of magniti
compression ratio. is larger at the pole than at the equator smaller at the equator than at the poles. This is a conseq
(rep = 3.4 andr.. = 2.9). of the fact that the injection speed is substantially larger a

When the cosmic ray back-reaction on the thermal com-equator than at the poles, and the assumed Maxwellian
ponent of the plasma is taken into account, the shock wavef the distribution function at the injection energy.

A} f (0, Ping, t) re — 1
pO/mp 3re .

(10)
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Fig. 3. Cosmic-ray and thermal pressuretat, = 4.0 for models
with n = 0.5 (solid line),n = 0.2 (dashed line)y = 0.1 (dotted
line).

5 Concluding Remarks

Itis clear from Figure 4 that the magnetic field geometry an
n = r1/r will play an important role in determining the
maximum energy obtained by the accelerated particles near

6=0

log(p/mc)

Fig. 4. Distribution function downstream of the shock for ang
6 = 0 andf = 7/2 at timesty /to = 1.75,t2/to = 2.5 andts /to =
4.0.7=0.2.
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