
Proceedings of ICRC 2001: 2896c© Copernicus Gesellschaft 2001

ICRC 2001

The central data acquisition system for the H.E.S.S. telescope system

C. Borgmeier, K. Mauritz, and C. Stegmann, for the H.E.S.S. Collaboration

Humboldt University Berlin, Invalidenstr. 110, D-10115 Berlin, Germany

Abstract. The paper gives an overview of the central DAQ
system of the H.E.S.S. telescope system. Special emphasis
is given to the software design.

1 Introduction

The High Energy Stereoscopic System, H.E.S.S. is a next
generation imaging air Cherenkov telescope designed to pro-
vide a comprehensive study of non-thermal phenomena in
the universe. The experiment will consist of a four telescope
array in the first phase which is currently under construc-
tion in the Khomas Highland of Namibia. A detailed status
report of the H.E.S.S. experiment is given elsewhere (Hof-
mann, 2001).

Each telescope in the array is a heterogeneous system with
several subsystems, including a camera with 960 individual
photo-multiplier tubes (pixels), light pulser systems for pixel
calibration and flat-fielding the camera, a tracking system for
telescope movement, and two CCDs for guide star observa-
tion and mirror alignment. Other subsystems in the array
include the PC farm, IR radiometers, cloud scanners, and op-
tical telescopes for controlling the atmospheric properties.

The Data Acquisition System (DAQ) is a crucial part of the
experiment, which provides the communication between all
of these systems, as well as the run control, slow control, data
collection, error handling, and monitoring to all subsystems.

2 Requirements

The main data flow is the event information from each cam-
era to the farm. The signals of each pixel of a camera are read
out via a high gain and a low gain path with 10 bits dynamic
range each. The event size from a camera is 4 kB, which with
data reduction reduces to approximately 1.5 kB. Hence, the
expected trigger rate of the four telescope system of 1 kHz
yields a data rate of 6 MB/s. A typical observation night will

Correspondence to:C. Stegmann (stegmann@ifh.de)

result in approximately 100 GB of event data to be handled
by the DAQ system.

Additionally, the subsystems produce data of different
sizes and at different rates. Data rates vary from a few bytes
every fraction of a second from the tracking control system
up to several kbytes on a minute time scale for image read-
out from the CCDs. The DAQ system provides tools to col-
lect, store, display, and link monitor data to the event data.

The H.E.S.S. experiment site in the Khomas Highland in
Namibia has only a small bandwidth telecommunication con-
nection to the participating institutes, so only minor inter-
vention from the outside is possible. Thus, the DAQ system
must be designed in a robust fashion and easily operated. It
is also expected that the H.E.S.S. telescope system will ex-
pand beyond Phase I, which demands that the DAQ system
be flexible to incorporate new components easily.

3 The Central DAQ Hardware

The central DAQ consists of a Linux PC farm connected by
a 1 GBit ethernet swcitch, the layout of which is shown in
Figure 1. The PCs contain dual Pentium III processors with
a 800 MHz clock and 256 MB RAM. Two servers, similar
to the farm PCs but with expanded networking capabilities,
control a 640 GB Raid array and two DLT tape-drives. The
front-end computers on the telescopes are connected to the
farm via a 100 Mbit/s fiber optic network. The whole sys-
tem is synchronized by a GPS time server to better than the
required accuracy of 1 ms.

The construction of the farm from discrete commercial
components allows maintainability and upgrades of the cen-
tral DAQ. Figure 2 shows a photograph of the central DAQ
during tests in Berlin. The left and right racks contain the 16
farm PCs and the middle rack contains the other components.

During data-taking, each camera CPU sends its event data
for a defined period to a single farm processor. While the
data on this PC are processed and stored locally in files (see
4.2), data are sent to the other PCs in turn. The monitor data



2897

CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU

Switch

Server Server

Raid DLTto telescopes

to control room

Fig. 1. The layout of the central DAQ system.

are collected centrally and also stored, and those data needed
for event processing are distributed concurrently to the farm
CPUs. In the morning, after the data have been collected,
they are read back from the farm PCs, assembled in a single
chronological event stream, and written to tape.

4 DAQ Software

The software for the central DAQ follows an object-oriented
design approach to provide flexibility and maintainability.
The central DAQ software package, DASH (Data Acquisi-
tion Software for H.E.S.S.), provides basic tools to build var-
ious on-line processes. DASH makes use of another software
package, SASH (Storage and Analysis Software at H.E.S.S.),
to provide classes for data storage and analysis.

4.1 DASH

The DAQ system needs to interface to the various subsys-
tems for control, configuration, error-handling, monitoring,
and read-out. A limited set of states has been defined to con-
trol the system. DASH needs to communicate with these di-
verse systems and ensure state-consistency. The DASH li-
brary provides simple, effective tools for their control, con-
figuration, and data transfer.

The fundamental DASH design to provide flexibility and
consistency throughout all subsystems is a building block ar-
chitecture. This permits systematic construction of various
subsystem controllers, like the tracking controller, CCD con-
troller, run controller, monitor servers, farm manager, etc..
These subsystem controllers interact to manage the H.E.S.S.
array.

The building blocks are C++ classes which the actual con-
trollers build upon from byinheritanceand aggregation.
Each building block provides a communication interface and
functionality of state control and data flow. The Inter Process
Communication and the major building blocks are described
below.

Fig. 2. The central DAQ system during test in Berlin.

4.1.1 Inter Process Communication

The DASH Inter Process Communication (IPC) usesom-
niORB, an open source communication package developed
by AT&T according to CORBA specifications (OmniORB,
1998). CORBA is a distributed object-oriented client-server
platform, which includes a Remote Procedure Call (RPC)
mechanism, object services, such as Naming Service, and
language mappings for different programming languages.
CORBA allows remote objects to be transparently accessed
as if they were local.

In addition, DASH uses theomniORBName Server to reg-
ister all running DASH objects. The Name Server permits
objects to be referenced by name without explicit knowledge
of the host computer and its port number. Object references
can be structured in the Name Server similar to a Unix direc-
tory structure.

4.1.2 Server and State Controller

Each subsystem controller is a remotely accessible server
with well-defined state transistions. DASH provides the class-
es,Dash::Server andDash::StateController , as
building blocks to construct these. TheDash::Server
class calls transparently all necessary methods to register the
object at the name service and readies the IPC. It provides
common methods for all DASH server applications so that
classes deriving from it are only required to implement their
specific methods. TheDash::StateController class,
which maintains the current state of an object and manages
its state transitions. It provides the common interface of all
actual servers participating in the system control.

4.1.3 Configuration

The configuration of each subsystem is organized by a cen-
tral MySQLdatabase. This allows the retrieval of parameter
change histories. A special H.E.S.S. configuration table for-
mat, including a C++ interface, has been developed to permit



2898

database access without explicit SQL knowledge.

4.1.4 Data Transfer

The transfer of any data inside the DAQ system follows a
push-architecture. This means that the data source decides
when to send data while the destination is always prepared
to accept them. Each source knows the target where the
data are to be sent. DASH includes the building block class,
Dash::BlockAcceptor , to provide the interface of each
link in the data chain. Its main method, theTakeBlock
function, accepts a data block. The block acceptor can main-
tain a pointer to a target to which the block is then forwarded.

Among the DASH-provided specializations of the block
acceptor are theDash::Sender and Dash::Buffer .
The former connects to a remote destination and syn-
chronously forwards all accepted data to it. The latter buffers
the accepted data blocks and sends them asynchronously.

The combination of these building blocks allow different
synchronous and asynchronous data transport networks. A
data source connected to a sender object uses a synchronous
blocking data transport, i.e. the control returns as soon as the
data has been sent. An intermediate buffer object decouples
the source from the network transport and allows an asyn-
chronous data transport with a minimal latency for a control
process.

The actual work on the data block is left to specializations
by derived classes. DASH provides further block acceptor
specializations which are able to understand and process dif-
ferent types of data blocks.

4.1.5 Monitoring Data

Monitoring data transfer is a specialization of the data trans-
fer and can be handled like any of the above mentioned data
blocks when transported between objects. The SASH library
(see 4.2) provides a hierarchy of monitor classes whose com-
mon feature is a time stamp. This allows the subsequent re-
combination of data between loosely connected systems.

SASH has defined classes for the basic monitor informa-
tion for each subsystem. Additionally, SASH provides a dy-
namic monitor class, which contains a map of numbers or
object pointers, each one indexed by a qualifying name. All
monitor events are stored in ROOT (ROOT, 1996) files and
are accessible for later analysis. Additionally, the monitor
information can be displayed on-line using ROOT graphics.

4.2 SASH

SASH is based upon ROOT and is responsible for data stor-
age and both on-line and off-line analysis. The requirements
for such a package include the flexiblity to adapt to changes
in which telescopes are used for different runs during a night,
changes (i.e. perhaps even different cameras) during the life-
time of the experiment, and the speed to be able to function
during the on-line data-taking. The flexibility is supported
by the object-oriented ROOT framework. ROOT also pro-
vides a C++ interpreter for interactive work, the capability

of dynamic library linkage, and object persistency. That is,
any object derived from a ROOT base class can be saved in
a ROOT file. The analysis tools in ROOT support physics
analysis with diagram, histogram, and fitting features.

SASH is a collection of C++ classes of distinct types: data
“containers” and data “manipulators”. The former stores the
data into various objects that form a representation of the ac-
tual system. For example, a telescope object maintains the
telescope’s configuration, monitoring information, and event
data. It also contains all of its pixel objects, each of which
has access to all data and information about itself. The “ma-
nipulator” type of class is based on theROOT Makerconcept
and is capable of manipulating the data and writing it into
the objects. It also stores its own analysis parameters into
the data file, which is especially useful for reproducing the
original results.

The data are converted on-line into the SASH format using
the ROOT tree concept for all types of event storage. ROOT
trees store data in a tabular format that is then mapped onto
objects. The raw data, each type of monitoring data, and
many possible instances of the processed data are each stored
in their own tree. In this way, the “DST” can be user-specific,
depending on what trees and which parts of the trees the user
chooses to keep. Storing the reconstructed parameters during
an analysis in these trees also grants SASH extra flexibility
for comparison of various cuts and algorithms.

5 Performance

The maximum reachable bandwidth of the central DAQ sys-
tem has been tested by sending simulated telescope events
simultaneously from four farm PCs, acting as senders, to a
single farm PC, acting as receiver. The sender and receiver
were based on the software described above, using a CORBA
protocol for data transfer. The event size was varied to ana-
lyze the behavior of the system from 100 bytes to 4 kB and
the achieved data rate was measured. The bandwidth was
found to be equally shared between all senders. The max-
imum input data rate into the receiver as a function of the
event size is shown in figure 3. The data rate exceeds the re-
quired bandwidth of 6 MB/s for event sizes larger than 300
Bytes. For the expected event size of a single camera event of
approximatly 1.5 kByte the bandwidth is 11 MB/s, yielding
a safety margin of nearly a factor two.

Monte Carlo events have been used to test the performance
of writing events into the SASH tree structure at the farm.
The raw event size was found to be within expectations and
the rate for reading and writing the events ranged from be-
tween 100 Hz to 300 Hz per farm node, depending on the
choice of on-line data compression. With the expected trig-
ger rate of 1 kHz, writing events will take only a fraction of
the available computing capacity.



2899

event length [Bytes]
0 500 1000 1500 2000 2500 3000 3500 4000

d
at

a 
ra

te
 [

M
B

yt
e/

s]

0

2

4

6

8

10

12 hardware limit

expected data rate

Farm PerformanceCentral DAQ PerformanceCentral DAQ PerformanceFarm PerformanceFarm PerformanceCentral DAQ PerformanceCentral DAQ Performance

Fig. 3. Performance of the central DAQ system.

6 Summary

The central DAQ system of the H.E.S.S. telescope array con-
sists of a modular high performance PC farm. Special em-
phasis was given to the development of a flexible and robust
software system based on C++, CORBA, and ROOT. By the
time of the conference, the DAQ system will be installed and
in operation at the site in Namibia.

Acknowledgements.This work was supported by the Bundesmin-
isterium f̈ur Forschung und Technologie under the contract number
05 AS9KHA 6.

References

W. Hofmann, 2001, Proc. of the 27th ICRC, Hamburg, 2001, to be
published

S. L. Lo and S. Pope, The Implementation of a High Perfor-
mance ORB over Multiple Network Transports, Distributed
Systems Engineering Journal, 1998. See alsoomniORB:
http://www.uk.research.att.com/omniORB-
/omniORB.html

R. Brun and F. Rademakers, ROOT – An Object Oriented Data
Analysis Framework, Proceedings AIHENP’96 Workshop, Lau-
sanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997)
81–86. See alsohttp://root.cern.ch/ .


