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Abstract. This is a progress report on Galactic cosmic ray
propagation calculations. To model the spectra of primary
and secondary cosmic rays in the solar vicinity we use an
analytical solution of the stationary transport equation for
Galactic cosmic rays in cylindrical geometry. In particular
stochastic reacceleration of the particles by scattering through
plasma waves in the interstellar medium is considered. Con-
sistency checks of the solution and first studies regarding the
cosmic ray protons are presented.

1 Introduction

To explain the measured hadronic cosmic ray energy spectra
above 1 GeV at solar position (e.g. Engelmann et al. (1990),
Menn et al. (2000), Sanuki et al. (2000), Wiebel-Sooth et al.
(1998), Webber (1997)) the propagation, acceleration and in-
teraction of Galactic cosmic rays in the interstellar medium
and in the Galactic halo have to be treated theoretically.
A model with realistic source and gas distributions taking
into account spallation for different nuclei shall be consid-
ered in the future. Here we deal with the spatial diffusion
and stochastic reacceleration of protons with different pri-
mary injection functions. The production of the initial spec-
tra could occur in supernova remnants by shock wave accel-
eration (for a review see Kirk (2000)).
The diffusion mechanism is provided by the scattering of the
particles through plasma waves superimposed on the Galac-
tic background magnetic field. In the quasilinear approxi-
mation of small electromagnetic pertubations the transport
equation for the isotropic phase space distribution function,
f(t,x, p), is obtained with only one momentum coordinate
p after averaging over pitch angle and the gyrophase of the
particles (e.g. Schlickeiser (2001)).
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1.1 The stationary transport equation

In this work we will assume a cylindrical geometry of the
Galactic disk (heightz0, radiusr0) and the halo (heightH,
radiusL) introducing the two remaining space coordinatesr
andz. The stationary transport equation without convection
and without continuous loss terms like synchrotron radiation,
which can be neglected for nuclei, then reads:[
κ0κ(p)

(
1
r
∂rr∂r + ∂2

z

)
+

1
p2
∂p
(
p2a2(p)∂p

)
− 1
Tc

]
(1)

f(r, z, p) = −S(r, z, p) .

The first and second term describe the spatial and the mo-
mentum diffusion with the diffusion coefficientsκ0κ(p) and
a2(p), respectively, both assumed independent of position
here. The third term describes the catastrophic losses of
hadronic cosmic rays by spallation or radioactive decay by
a time scaleTc. On the right hand side enters the source
function, representing the preaccelerated initial cosmic ray
distribution in space and momentum.
The diffusion coefficients can be determined by quasilinear
test particle calculations for arbitrary plasma modes. For a
mixture of slab Alfv́en waves and fast magnetosonic waves
propagating along the background magnetic field we use the
formulas of Schlickeiser (2001) forK1 andD1

κ0κ(p) = K1p
2−q (2)

D(p) = D1p
q (3)

and a wave number spectrumI(k) = I0k
−q with spectral

indexq. We define additionallyη := 2− q.

1.2 The solution

If the source function and the diffusion coefficients are sepa-
rable, the differential equation can be solved by applying the
“scattering time” method (Wang and Schickeiser, 1987) un-
der “free-escape” boundary conditions (Lerche and Schlick-
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eiser, 1985) by a series ansatz of the form

f(r, z, x) =
∞∑
m=0

∞∑
n=0

cmntmn(r, z)Φmn(x) (4)

whereinx := p
mpc

. The eigenvaluesλmn of the spatial prob-
lem enter by the variable

φmn :=
Tf

Tmn(λmn)
(5)

= (mpc)2(2−q)K1

D1

(
y2
n

L2
+

(2m− 1)2π2

4H2

)
in the separated momentum equation (Appendix A) which is
of confluent hypergeometric type. HereTmn andTf are the
time scales for the spatial and the momentum diffusion for
protons at 1 GeV.yn are the zeros of the Bessel functionJ0.
In the general case the solution consists of the confluent hy-
pergeometric functionsM andU (Schlickeiser, 2001), in the
case of no catastrophic losses for protons we get modified
Bessel functionsI andK (cf. Mause (1993)):

Φmn(x) =
∫ ∞

0

dx0

[
x2

0TfS(x0)
]
Gmn(x, x0) (6)

with

Gmn(x, x0) =
1
η
x
η−3

2 x
η−3

2
0 (7) I 3−η

2η
(
√
φmn
η xη)K 3−η

2η
(
√
φmn
η xη0) for x ≤ x0

I 3−η
2η

(
√
φmn
η xη0)K 3−η

2η
(
√
φmn
η xη) for x0 ≤ x

.

The integrals can be calculated numerically for given spa-
tial and momentum source functionsS(r, z) andS(x) and in
special cases analytically. As the solution consists of an infi-
nite double sum over the eigenvalue indicesm andn, prac-
tically it has be to cut off at a certain number of terms if the
accuracy is sufficient.

2 Studies of the solution

2.1 Theoretical consistency checks of the momentum solu-
tion

1. Inserting the solution fulfills the differential equation (see
Appendix A).
2. The solution for no catastrophic losses is also obtained if
Tc →∞ in theM -U -solution.

2.2 The limitq → 2

In the limit q → 2 we get the following Green’s function
of the momentum solution for a certain eigenvalue (Schlick-
eiser, 2001):

Gmn(x, x0) =
(xx0)−

3
2

2
√

9
4 + φmn

(8)

{
(x/x0)

√
9
4 +φmn for 0 ≤ x ≤ x0 <∞

(x/x0)−
√

9
4 +φmn for 0 < x0 ≤ x ≤ ∞

.

Fig. 1. Momentum solution for aδ-injection at 1 GV for different
spectral indices of the plasma wave spectrum. The numerically cal-
culated functions forq < 2 converge towards the limiting curve (8)
for q = 2 for one special eigenvalueφmn.

The appropriate numerically calculated phase space distribu-
tion function forq < 2 converges towards this limiting curve
for one special eigenvalueφmn, as it should be (see Figure
1).

2.3 Power law momentum injection function

Now we study the response of the momentum solution for an
injection spectrum

S(x0) = s0x
−β−2
0 (9)

covering the interval fromxmin toxmax by varying the spec-
tral indexq of the plasma turbulence, the ratioTf/T0 of the
momentum to the spatial diffusion time scale and the spectral
indexβ ot the initial spectrum.

A further test of the analytical solution and especially of the
numerical code are the following approximations (see Ap-
pendix B) for the momentum solution

Φmn(x) ' s0Tf
β − 1

1
3− η

x1−β
minx

η−3 (10)

for x� xc and

Φmn(x) ' s0Tf
1

φmn
x−η−β−2 (11)

for x� xc according to the characteristic momentum

xc :=
(

η√
φmn

) 1
η

(12)

which emerges in the argument of the Bessel function.
In the first case the influence of the source function disap-
peared and momentum diffusion dominates and in the sec-
ond case the initial power law is only steepened byq− 2 and
momentum diffusion plays a minor role.
Above the maximum injection momentumxmax all spectra
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Fig. 2. Phase space distribution function for a power law momen-
tum source function (9) with spectral indexβ = 1.75 extending
to xmax = 106 for different spectral indicesq of the plasma tur-
bulence spectrum andφ =

Tf
T0

= 1
10

. The three upper flat dotted
lines are the power law approximations (10) for smallx with the
mentioned parametersβ andφ and the quotedq-values. The lower
steeper dotted line is the respective approximation (11) for largex
for the caseq = 1.6.

cut off exponentially, independent of the source indexβ (see
Appendix B):

Φmn(x) ∼ x− 3
2 e−( x

xc
)η . (13)

The approximating curves from Equations (10) and (11) are
superimposed in the Figures 2, 3 and 4.

The strong effect of the wave number distribution of the tur-
bulence spectrum shows Figure 2. For larger values ofq
the momentum diffusion process can accelerate particles to
higher momenta.
A similar consequence has the increase ofTf/T0 (see Figure
3). If the time scale for momentum diffusion in comparison
to the spatial diffusion is smaller, more particles can reach
higher momenta.
From Figure 4 one notices that a flatter injection spectrum of
course results in a flatter processed spectrum. If momentum
acceleration dominates, the influence of the primary distribu-
tion vanishes for large momenta.

2.4 Source spectrum with a dispersive index

Assuming a superposition of source spectra with different
spectral indices, like it can occur if the sources are supernova
remnants producing power laws with variable steepness, we
insert the dispersive source function

S(x0) = s0x
−β−2+ 1

2σ
2 ln( x0

xr
)

0 (14)

with a mean index< β > and a dispersion parameterσ at a
reference momentumxr.
A comparison to the single power law distribution is shown
in Figure 5. A typical dispersion parameter is in the order

Fig. 3. Phase space distribution function with an injection power
law (9) for q = 1.8 and different ratios of the momentum to the
spatial diffusion time scale

Tf
T0

. The upper flat dotted curve is the
approximation (10) for smallx, the two lower steeper curves are the
approximations (11) for largex for the cases

Tf
T0

= 10 and
Tf
T0

= 1.

of σ = 0.25 (Büsching et al., 2001). To see an effect, here
we take an extreme value ofσ = 0.55. As expected, the
flattest source spectra of the sample dominate for large values
thereby shifting the particles to higher momenta.

3 Summary

We have investigated the transport equation for Galactic cos-
mic rays including stochastic reacceleration. Here we present
analytical solutions in the form of eigenfunction expansions.
Besides some theoretical consistency checks of the momen-
tum solution, we studied the spectra provided by numerically
calculating the integrals of the momentum solution functions
for different parameter sets.
The numerical code seems to be consistent with the obtained
analytical approximations. The influence of momentum dif-
fusion becomes stronger for steeper spectra of the plasma
wave turbulence in the interstellar medium and of course, if
the ratio of the momentum to the spatial diffusion time scale
decreases.
In the future we will examine more terms of the sum of the
eigenfunctions and discuss the spatial distribution functions.
In the end we want to model the spectra of different nuclei
by taking into account spallation processes.
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grant Verbundforschung 05AG9PCA.
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Fig. 4. Phase space distribution function forq = 1.8 and a source
function (9), but with varyingβ. The curves are calculated for two
different time scale ratios. Again the upper dotted curve is yielded
with equation (10) for smallx and

Tf
T0

= 0.1 and the lower steeper

curves (11) approximate the three cases for
Tf
T0

= 1 for largex.

Appendix A The momentum equation and inserting its
solution

The momentum differential equation for the Green’s function
reads:[
d

dx

(
x4−η d

dx

)
− φx2+η

]
G(x, x0) = −δ(x− x0) . (A1)

Hereφ ≡ φmn.
Inserting the expression for the Green’s function (7) on the
left hand side, transforming to the new variablez through

x =
(

ηz√
φ

) 1
η

and using the relations for the derivatives

of the modified Bessel functions (Abramowitz and Stegun,
1984), e.g.(

1
z

d

dz

)k
[zνIν(z)] = zν−kIν−k(z) (A2)

after some calculations we obtain theδ-function on the right
hand side.

Appendix B Approximations of the momentum solution
for a power law

Plugging in the injection power law (9) and introducing the
variable (12) we obtain for the momentum function

Φmn(x) = s0 Tf
1
η2
xη−β−2 (B1)[

Kν(B)
∫ 1

( xminx )η
dy y−

η+2β+1
2η Iν(By)

+ Iν(B)
∫ ( xmaxx )η

1

dy y−
η+2β+1

2η Kν(By)

]

Fig. 5. Source distribution with dispersion as in Equation (14) with
σ = 0.55 and< β >= 1.75. Additionally drawn is the result for a
single power law (9) withβ = 1.75.

with

B := B(x) =
√
φmnx

η

η
=
(
x

xc

)η
andν :=

3− η
2η

. (B2)

Applying the approximation formulas of the modified Bessel
function for small and large arguments

Iν(z) '

{ ( 1
2 z)

ν

Γ(ν+1) for |z| � 1
ez√
2π z

for |z| � 1
(B3)

Kν(z) '
{

1
2Γ(ν)

(
1
2z
)−ν

for |z| � 1√
π
2z e
−z for |z| � 1

(B4)

after some additionally approximations we get the formulas
(10) and (11).
In the case ofx > xmax only an integral independent ofx
remains:

Φmn(x) = s0Tf
1
η
x
η−3

2 Kν

(
x

xc

)η
(B5)∫ xmax

xmin

dx0 x
−β+ η−3

2
0 Iν

(
x0

xc

)η
.
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