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The relativistic box model

J. G. Kirk
Max-Planck-Institut fir Kernphysik, D-69029 Heidelberg

Abstract. The equations governing the ‘box model’ approachalised further to the case of relativistic shocks, for which no
to diffusive shock acceleration are derived and generalised talosed-form analytic solutions of the transport equation are
apply to acceleration at relativistic shocks. The difficulties available.

encountered in describing the particle spectrum close to the
point where losses balance gains are discussed in relation tg

the question of ‘pile-ups’. Nonrelativistic boxes

For nonrelativistic flows the equation governing the particle
densityn(p, z,t) in a prescribed, one-dimensional velocity
1 Introduction field u(x) can be written in conservation form:
The theory of diffusive particle acceleration at shock fronts on + o® + ov
involves, in the simplest, test-particle approximation the so- ot = 9z Ip
lution of the cosmic ray transport equation in the variablesHere the fluxesP and ¥ in configuration space and in mo-
x (position), p (magnitude of the momentum) and time  mentum space, respectively, are defined as
A formal expression for the Green’s function is known for
the case of a plane shock (Webb et al , 1995). However® = [u—r0/0xln @
the inclusion of synchrotron losses by the accelerated partil = [—(p/3)(du/dz) — ap®|n 3)
cles significantly complicates the problem: an analytic so- o - ) ,
lution has been found only for the stationary case and for® IS the diffusion coefficient, which may be "’2”;’”0“20” of mo-
constant (energy independent) diffusion coefficient (Webb efMentump, and the parameter = (4o /3m=c®)(B*/87),
al, 1984; Heavens & Meisenheimer , 1987); Time-dependenpeterm'nes the synchrotron loss rat_e of an individual part|-
solutions, or solutions with a diffusion coefficient which de- ¢I&: Withor the Thomson cross-section afithe magnetic
pends on energy require a numerical approach. field. ) , , . . )

These are of limited usefulness for detailed modelling of Consider a simple d|scont|nuous_ velocity profile= u._
the spectra of astrophysical sources of synchrotron radiatio%or ¢ <0, andu = u, forz > 0, with u_ > u, > 0. To

- 0 1)

such as supernova remnants and blazars, since one require d the box equations, one can proceed by defining spatial

solution that can be computed rapidly. This has led to thebotmdari?ﬁ att N ;:— ‘?ndx ?f T+ ?Imi integrflting Ea. (1)
development of nhumerous models in which the space de- etween he two. 1 ies sufficiently far ups reame( —
oo) the flux ®(z_) vanishes. At the other boundary,,

pendence of the problem is approximated as homogeneous T
within one or two zones [see Kirk, Melrose & Priest (1994)]. t is is not the case, but th.e.e§sent|al .S|mpI|f|cat|on inherent
Two-zone models, with one acceleration zone and one cool™ thg box model result§ it it is perm|55|ble to neglect the
ing zone, are the most useful. The equations governing thé}“ﬁuswe part of the spatial flux there, i.e.,

acqeleratlon zone are equivalent to_those o_fthe ‘box’ models¢(m+) = u,n(z,) (4)
which have recently been generalised to include the effects

of energy dependent diffusion Drury et al (1999). In this pa- One then finds

per, the box model equations are first re-derived in a mannery, 9 KAU

which clarifies their range of validity. They are then gener- ot (n L)+ o ?fp - a+p2Ls) m} +un, = 0
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wheren, (p,t) = n(p,z,t), ay = a(z,) andé(p,t) = 3 Relativistic boxes

n(p,0,t)/n,, and two measures of the box size have been

introduced: If the bulk plasma speed is relativistic, one must start from
ot the equation governing the angular dependent distribution

L(p,t) = / dz'n(p,a’,t)/n. (6) function f, representing the density of particles in phase space
- [EqQ. (10) of Kirk et al (1988)]. For a stationary velocity pro-

and ot file, and assuming ultra-relativistic particles and cylindrical

Ls(p,t) = / dz’a(z")n(p, 2’ t)/(an,) (7)  symmetry of the distribution about the direction of the shock
- normal, this equation reads:

The first of theseL(p), which is of the order ok/u_ in f

f 0
the absence of losses, is related to the momentum dependeht + uz) 7 + T'(u+ 1) -
box width introduced by Drury et al (1999). The second du af of
merely takes into account the possibility that synchrotron—I"(u + u)d—F2 (upa— +(1— u2)a—)
losses are influenced by the compression of the magnetic v p "
field; for a parallel shocl. = L. In this case, the nonrela- _ig (ap4f) - ED 6_f
tivistic box model equations [eq. (13) of Drury et al (1999)] p? Op " op
are obtained, provided the downstream boundary is placed gfherel = (1 — u2)~1/2, v is the fluid speed, in units of the
a point where the density is approximately equal to that at thespeed of lighto is as defined in the non-relativistic case and

(11)

shock front, in which casg = 1. _ _ D, is the pitch-angle diffusion coefficient. Other transport

Rewriting in terms of the number of particles in the box coefficients describing, for example, second order Fermi ac-
N(p,t) = Ln,: one finds celeration, are usually less important and have been omitted
ON 0 [ p , L N in (11). Position,z, and time,t, are meaSl_Jred in the lab.
ot " op |t A N+t - = 0 (8) frame, but the momentumand (cosine of) pitch angle are

measured in the local rest frame of the fluid. An integration
where the acceleration timg.. = 3L/(Auf) and escape over angles leads to:
time tese = L/u, follow from a microscopic considera- P
tion of the acceleration process, or, alternatively, the loss-free— (I'J + TuH) + — (TuJ + TH)

Green'’s function. When combined with an equation for the Oz

particle densityr.(p, z, t) in the cooling zone, +i2§ {—p?’(K n uH)di(Fu) —aplJ| =0 (12)
X

one one 0 9 N rov o

ot + Ut e a—p(%p ne) = o 9) The moments of the phase space-dengityith respect to

the cosineu of the angle to the shock normal which appear

this system has been widely used to model synchrotron spegn this equation are analogous to those defined in the theory
trafe.g., Kirk etal (1998)]; a simple time-dependent analytic of radiative transfer:

solution is available for (almost) arbitrary energy dependence 11
of tacc andtesc- (J7 [—[7 K) — 271-/ d,U/f(p, W, T, t)(lv L, ,U/Q) (13)
The approximations used in the above derivatdfuf, ) = —1

u,n, and{ = 1) are acceptable for low momenta, where the  Proceeding as in the nonrelativistic case, one now places a
downstream distribution remains close to the loss-free soludownstream boundary., , at a point where the distribution
tion (n(p, x,t) = constant for 2 > 0) and the diffusive flux  has relaxed to isotropy, i.e., whefe = 0, J = 3K. Then,

is small. However, they run into difficulty near the cut-off integrating from—oo to . :

momentunp,.x = Au/(«, L): in order to keegg ~ 1, itis 9

necessary to place the downstream boundary so close to thQ_(an?L) + 9 { [A(F“) ep— HP LS} 1"+p2j+}

shock front that particles with = p,,.. do not cool appre- t dp 30, L,

ciably between leaving the shock and crossing the boundary.  +u. T, p?J, = 0 (14)

This impliesz, < u,/(a,p). However, at this position, whereA(Tw) = (I u. — Tou,), € = (3(K +uH)) /.

Estizs(;:ggfzf a gradient en, that leads to a diffusive flux (with (.. .) the arithmetic mean across the discontinuity) and
the effective lengths are now defined via

n, KAy D
~ 10 T+
" unfonp (uiL) (G2 v O [, (15)
This flux is neglected in the model, but is about the same ifj
magnitude as the advective flux fora~ pnax. Thus, box- Ls = / da’aJ/J, (16)
models are useful for modelling the spectrum of accelerated -

particles ap < pmayx but are not appropriate tools for the in- In terms of N = LI',p?J., Eq. (8) is recovered, with the
vestigation of possible pile-ups closeng.x [e.9., Schlick-  replacementr, = a_ /T, taec = 3LT,/[A(Tu)¢] and
eiser (1984); Protheroe & Stanev (1999)]. tese = L/uy.
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However, in contrast to the nonrelativistic case, the ap-Kirk J.G., Guthmann A.W., Gallant Y.A., Achterberg A. 2000 ApJ

proximation¢ =~ 1 is not valid even if losses are neglected.

542,235

This is because the relativistic fluid motion imposes an an-Kirk J.G., Melrose D.B., Priest E.R. ‘Plasma Astrophysics’
isotropy on the particle distribution at the shock, leading to a _(Springer-Verlag, Heidelberg)

particle flux there which cannot be approximated as the a
vective flux. Within the box picture it is not possible to deter-
mine&. However,t,.. andt.. are related quite generally to
the power-law index of the stationary distribution produced
by a shock frontt,.. = (s — 3)tese, SO that

d_Kirk J.G., Rieger F.M. Mastichiadis A. 1998 A&A 333, 452

Kirk J.G., Schlickeiser R., Schneider P. 1988 ApJ 328, 269
Protheroe R.J. & Stanev T. 1999 Astroparticle Phys. 10, 185
Schlickeiser R. 1984 A&A 136, 227

Webb G.M., Drury L.O’C., Biermann P.L. 1984 A&A 137, 185
Webb G.M., Zank G.P., Ko C.M., Donohue D.J. 1995, ApJ 453, 178

£ = e a7)

(s —3)A(Tu)
The appropriate value afcan be determined for a given rela-
tivistic shock front using, for example, the method of Kirk et
al (2000). For the purpose of spectral modelling, however,
it is usually found directly from the low frequency spectral
index of synchrotron radiation.

4 Conclusions

The approach to particle acceleration at shocks that involves
treating the distribution as homogeneous over certain spatial
regions or ‘boxes’ is a valuable tool for modelling source
spectra. This is mainly because it is possible to include pro-
cesses such as losses and time-dependent injection and still
obtain easy to compute analytic solutions. The equations
contain acceleration and escape rates which must be found
from a more detailed theory. In the relativistic case, the same
equations can be derived, with minor reinterpretation of the
expressions for the rates. The stationary, low momentum
spectrum is, however, not related to the compression ratio
of the shock by a simple algebraic expression. Instead, this
quantity must be used as an input parameter in modelling, or,
alternatively, computed using a semi-analytic method (Kirk
etal, 2000).

However, a drawback of this approach, that applies to both
the nonrelativistic and relativistic cases, is that the distribu-
tion function is not described accurately close to the point
where losses balance gains. This implies that the contro-
versial question of whether ‘pile-ups’ can be expected near
the maximum energy cannot be addressed using box mod-
els. Physically, the reason is that pointed out by Drury et
al (1999): box models assume the escape probability from
the acceleration zone is the same for all particles, whereas,
in reality, a range of escape probabilities occurs, depending
on the instantaneous particle position. This range of escape
rates determines the shape of the distribution at the cut-off.
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