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Abstract. The equations governing the ‘box model’ approach
to diffusive shock acceleration are derived and generalised to
apply to acceleration at relativistic shocks. The difficulties
encountered in describing the particle spectrum close to the
point where losses balance gains are discussed in relation to
the question of ‘pile-ups’.

1 Introduction

The theory of diffusive particle acceleration at shock fronts
involves, in the simplest, test-particle approximation the so-
lution of the cosmic ray transport equation in the variables
x (position), p (magnitude of the momentum) and timet.
A formal expression for the Green’s function is known for
the case of a plane shock (Webb et al , 1995). However,
the inclusion of synchrotron losses by the accelerated parti-
cles significantly complicates the problem: an analytic so-
lution has been found only for the stationary case and for
constant (energy independent) diffusion coefficient (Webb et
al , 1984; Heavens & Meisenheimer , 1987); Time-dependent
solutions, or solutions with a diffusion coefficient which de-
pends on energy require a numerical approach.

These are of limited usefulness for detailed modelling of
the spectra of astrophysical sources of synchrotron radiation
such as supernova remnants and blazars, since one requires a
solution that can be computed rapidly. This has led to the
development of numerous models in which the space de-
pendence of the problem is approximated as homogeneous
within one or two zones [see Kirk, Melrose & Priest (1994)].
Two-zone models, with one acceleration zone and one cool-
ing zone, are the most useful. The equations governing the
acceleration zone are equivalent to those of the ‘box’ models,
which have recently been generalised to include the effects
of energy dependent diffusion Drury et al (1999). In this pa-
per, the box model equations are first re-derived in a manner
which clarifies their range of validity. They are then gener-
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alised further to the case of relativistic shocks, for which no
closed-form analytic solutions of the transport equation are
available.

2 Nonrelativistic boxes

For nonrelativistic flows the equation governing the particle
densityn(p, x, t) in a prescribed, one-dimensional velocity
field u(x) can be written in conservation form:

∂n

∂t
+
∂Φ
∂x

+
∂Ψ
∂p

= 0 (1)

Here the fluxesΦ andΨ in configuration space and in mo-
mentum space, respectively, are defined as

Φ = [u− κ∂/∂x]n (2)

Ψ = [−(p/3)(du/dx)− αp2]n (3)

κ is the diffusion coefficient, which may be a function of mo-
mentump, and the parameterα = (4σT/3m2c2)(B2/8π),
determines the synchrotron loss rate of an individual parti-
cle, withσT the Thomson cross-section andB the magnetic
field.

Consider a simple discontinuous velocity profileu = u−
for x < 0, andu = u+ for x > 0, with u− > u+ > 0. To
find the box equations, one can proceed by defining spatial
boundaries atx = x− andx = x+ and integrating Eq. (1)
between the two. Ifx− lies sufficiently far upstream (x− →
−∞) the flux Φ(x−) vanishes. At the other boundary,x+,
this is not the case, but the essential simplification inherent
in the box model results if it is permissible to neglect the
diffusive part of the spatial flux there, i.e.,

Φ(x+) = u+n(x+) (4)

One then finds

∂

∂t
(n+L) +

∂

∂p

[(
∆u
3
ξp− α+p

2Ls

)
n+

]
+ u+n+ = 0

(5)



2044

wheren+(p, t) = n(p, x+, t), α+ = α(x+) and ξ(p, t) =
n(p, 0, t)/n+, and two measures of the box size have been
introduced:

L(p, t) =
∫ x+

−∞
dx′n(p, x′, t)/n+ (6)

and

Ls(p, t) ≡
∫ x+

−∞
dx′α(x′)n(p, x′, t)/(α+n+) (7)

The first of these,L(p), which is of the order ofκ/u− in
the absence of losses, is related to the momentum dependent
box width introduced by Drury et al (1999). The second
merely takes into account the possibility that synchrotron
losses are influenced by the compression of the magnetic
field; for a parallel shockL ≡ Ls. In this case, the nonrela-
tivistic box model equations [eq. (13) of Drury et al (1999)]
are obtained, provided the downstream boundary is placed at
a point where the density is approximately equal to that at the
shock front, in which caseξ = 1.

Rewriting in terms of the number of particles in the box
N(p, t) = Ln+: one finds

∂N

∂t
+

∂

∂p

[
p

tacc
− α+p

2Ls

L

]
N +

N

tesc
= 0 (8)

where the acceleration timetacc = 3L/(∆uξ) and escape
time tesc = L/u+ follow from a microscopic considera-
tion of the acceleration process, or, alternatively, the loss-free
Green’s function. When combined with an equation for the
particle densitync(p, x, t) in the cooling zone,

∂nc

∂t
+ u+

∂nc

∂x
− ∂

∂p
(α+p

2nc) =
N

tesc
, (9)

this system has been widely used to model synchrotron spec-
tra [e.g., Kirk et al (1998)]; a simple time-dependent analytic
solution is available for (almost) arbitrary energy dependence
of tacc andtesc.

The approximations used in the above derivation (Φ(x+) =
u+n+ andξ = 1) are acceptable for low momenta, where the
downstream distribution remains close to the loss-free solu-
tion (n(p, x, t) = constant for x > 0) and the diffusive flux
is small. However, they run into difficulty near the cut-off
momentumpmax = ∆u/(α+L): in order to keepξ ≈ 1, it is
necessary to place the downstream boundary so close to the
shock front that particles withp = pmax do not cool appre-
ciably between leaving the shock and crossing the boundary.
This impliesx+ < u+/(α+p). However, at this position,
losses impose a gradient onn+, that leads to a diffusive flux
of the order of

κ
n+

u+/α+p
≈
(
κ∆u
u2

+L

)(
p

pmax

)
u+n+ (10)

This flux is neglected in the model, but is about the same
magnitude as the advective flux forp ≈ pmax. Thus, box-
models are useful for modelling the spectrum of accelerated
particles atp� pmax but are not appropriate tools for the in-
vestigation of possible pile-ups close topmax [e.g., Schlick-
eiser (1984); Protheroe & Stanev (1999)].

3 Relativistic boxes

If the bulk plasma speed is relativistic, one must start from
the equation governing the angular dependent distribution
functionf , representing the density of particles in phase space
[Eq. (10) of Kirk et al (1988)]. For a stationary velocity pro-
file, and assuming ultra-relativistic particles and cylindrical
symmetry of the distribution about the direction of the shock
normal, this equation reads:

Γ(1 + uµ)
∂f

∂t
+ Γ(u+ µ)

∂f

∂x

−Γ(u+ µ)
du
dx

Γ2

(
µp
∂f

∂p
+ (1− µ2)

∂f

∂µ

)
− 1
p2

∂

∂p

(
αp4f

)
=

∂

∂µ
Dµµ

∂f

∂µ
(11)

whereΓ = (1− u2)−1/2, u is the fluid speed, in units of the
speed of light,α is as defined in the non-relativistic case and
Dµµ is the pitch-angle diffusion coefficient. Other transport
coefficients describing, for example, second order Fermi ac-
celeration, are usually less important and have been omitted
in (11). Position,x, and time,t, are measured in the lab.
frame, but the momentump and (cosine of) pitch angleµ are
measured in the local rest frame of the fluid. An integration
over angles leads to:

∂

∂t
(ΓJ + ΓuH) +

∂

∂x
(ΓuJ + ΓH)

+
1
p2

∂

∂p

[
−p3(K + uH)

d
dx

(Γu)− αp4J

]
= 0 (12)

The moments of the phase space-densityf with respect to
the cosineµ of the angle to the shock normal which appear
in this equation are analogous to those defined in the theory
of radiative transfer:

(J,H,K) = 2π
∫ +1

−1

dµf(p, µ, x, t)(1, µ, µ2) (13)

Proceeding as in the nonrelativistic case, one now places a
downstream boundary,x+, at a point where the distribution
has relaxed to isotropy, i.e., whereH = 0, J = 3K. Then,
integrating from−∞ to x+:

∂

∂t
(LΓ+p

2J+) +
∂

∂p

{[
∆(Γu)

3Γ+

ξp− α+p
2Ls

Γ+

]
Γ+p

2J+

}
+u+Γ+p

2J+ = 0 (14)

where∆(Γu) = (Γ−u− − Γ+u+), ξ = 〈3(K + uH)〉 /J+

(with 〈. . .〉 the arithmetic mean across the discontinuity) and
the effective lengths are now defined via

L =
∫ x+

−∞
dx′(J + uH)/J+ (15)

Ls =
∫ x+

−∞
dx′αJ/J+ (16)

In terms ofN = LΓ+p
2J+, Eq. (8) is recovered, with the

replacementα+ ⇒ α+/Γ+, tacc = 3LΓ+/[∆(Γu)ξ] and
tesc = L/u+.
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However, in contrast to the nonrelativistic case, the ap-
proximationξ ≈ 1 is not valid even if losses are neglected.
This is because the relativistic fluid motion imposes an an-
isotropy on the particle distribution at the shock, leading to a
particle flux there which cannot be approximated as the ad-
vective flux. Within the box picture it is not possible to deter-
mineξ. However,tacc andtesc are related quite generally to
the power-law indexs of the stationary distribution produced
by a shock front:tacc = (s− 3)tesc, so that

ξ =
3Γ+u+

(s− 3)∆(Γu)
(17)

The appropriate value ofs can be determined for a given rela-
tivistic shock front using, for example, the method of Kirk et
al (2000). For the purpose of spectral modelling, however,
it is usually found directly from the low frequency spectral
index of synchrotron radiation.

4 Conclusions

The approach to particle acceleration at shocks that involves
treating the distribution as homogeneous over certain spatial
regions or ‘boxes’ is a valuable tool for modelling source
spectra. This is mainly because it is possible to include pro-
cesses such as losses and time-dependent injection and still
obtain easy to compute analytic solutions. The equations
contain acceleration and escape rates which must be found
from a more detailed theory. In the relativistic case, the same
equations can be derived, with minor reinterpretation of the
expressions for the rates. The stationary, low momentum
spectrum is, however, not related to the compression ratio
of the shock by a simple algebraic expression. Instead, this
quantity must be used as an input parameter in modelling, or,
alternatively, computed using a semi-analytic method (Kirk
et al , 2000).

However, a drawback of this approach, that applies to both
the nonrelativistic and relativistic cases, is that the distribu-
tion function is not described accurately close to the point
where losses balance gains. This implies that the contro-
versial question of whether ‘pile-ups’ can be expected near
the maximum energy cannot be addressed using box mod-
els. Physically, the reason is that pointed out by Drury et
al (1999): box models assume the escape probability from
the acceleration zone is the same for all particles, whereas,
in reality, a range of escape probabilities occurs, depending
on the instantaneous particle position. This range of escape
rates determines the shape of the distribution at the cut-off.
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