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Abstract. Observations of interstellar scintillations, general
theoretical considerations and comparison of interstellar ra-
diative cooling in HII-regions and in the diffuse interstel-
lar medium with linear Landau damping estimates for fast-
mode decay, all strongly imply that the power spectrum of
fast-mode wave turbulence in the interstellar medium must
be highly anisotropic. It is not clear from the observations
whether the turbulence spectrum is oriented mainly parallel
or mainly perpendicular to the ambient magnetic field, ei-
ther will satisfy the needs of balancing wave damping en-
ergy input against radiative cooling. This anisotropy must be
included when transport of high energy cosmic rays in the
Galaxy is discussed. Here we calcuate the momentum diffu-
sion coefficient of cosmic ray particles.

1 Introduction

Observations of interstellar scintillations (Rickett, 1990; Span-
gler, 1991), general theoretical considerations (Goldreich and
Sridhar, 1995), and comparison of interstellar radiative cool-
ing in HII-regions and in the diffuse interstellar medium with
linear Landau damping estimates for fast-mode decay (Lerche
and Schlickeiser, 2001), all strongly imply that the power
spectrum of fast-mode wave turbulence in the interstellar me-
dium must be highly anisotropic. It is not clear from the ob-
servations whether the turbulence spectrum is oriented mainly
parallel or mainly perpendicular to the ambient magnetic field,
either will satisfy the needs of balancing wave damping en-
ergy input against radiative cooling. Theoretically, Goldreich
and Sridhar (1995) prefer turbulence organized in ribbon-like
stuctures paralleling the ambient field. But, whichever way
the turbulence is organized (and one expects that observa-
tions over the next decade or so should resolve the current
ambiguity), there is little question that it is highly anisotropic.

This anisotropy must be included when transport of high
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energy cosmic rays in the Galaxy is discussed. So far, with
the noteworthy exception of Jaekel and Schlickeiser (1992),
in all the literature concerning the determination of cosmic
ray transport parameters, there appears to be consideration
given only to turbulence which has a power spectrum ei-
ther slab-like along the ordered magnetic field or isotropi-
cally distributed in wavenumber (e.g. Schlickeiser and Miller
(1998)–hereafter referred to as SM). The purpose of the pre-
sent work is to remedy this defect to some extent by evaluat-
ing the relevant cosmic ray transport parameters in the pres-
ence of anisotropic wave turbulence.

2 Turbulence spectrum

A synthesis of current observations would indicate that a
plasma wave power spectrum of the form

I(k) = I0 [k2
‖ + Λk2

⊥]−(2+s)/2 (1)

satisfies the needs of the interstellar scintillation observa-
tions, the balance of wave energy dissipation and radiative
cooling in HII-regions and in the diffuse interstellar medium,
and is in accord with the general theoretical arguments ad-
vanced by Goldreich and Sridhar (1995). According to Rick-
ett (1990) and Spangler (1991) Eq. (1) is valid for|k|(≡
(k2
‖ + k2

⊥)1/2) larger than a minimum wavenumber,kmin,
and less than a maximumkmax. Spangler (1991) identifies
these wavenumbers as due to an inner scale length,lmin(≡
2π/kmax), and an outer scale lengthlmax(≡ 2π/kmin). Ob-
servations indicate that the power spectral index,s, is around
5/3, while normalization of the power spectrum requires

(δB)2 =
∫
d3k I(k) =

2πI0
∫ 1

−1

dη[η2 + Λ(1− η2)]−(2+s)/2

∫ kmax

kmin

dk k−s (2)

wherek‖ = kη, k⊥ = k(1− η2)1/2, with η being the cosine
of the propagation angle of a plasma wave with respect to the
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ambient magnetic field. Moreover,(δB)2 is the fluctuation
strenth in the magnetic field, and the constantΛ accounts
for the turbulence anisotropy. Note that if the turbulence is
isotropic(Λ = 1) then

I0(Λ = 1) =
(δB)2

4π
/

∫ kmax

kmin

dk k−s (3)

while for non-isotropic turbulence

I0(Λ) = I0(Λ = 1)/ 2F1(1 +
s

2
, 1;

3
2

; 1− Λ−1) (4)

3 Cosmic ray Fokker-Planck coefficients

On the basis of quasilinear transport theory the general form
of the Fokker-Planck coefficients has been given by SM for
cosmic ray particles with speedsv >> VA, whereVA =
B0/
√

4πρ is the Alfven speed in terms of the ambient mag-
netic field strength,B0, and the ionized mass density,ρ. Eqs.
(17)-(19) of SM are the relevant factors to examine, repre-
senting the Fokker-Planck-coefficientsDµµ, Dpµ andDpp.
Hereµ = p‖/p is the cosine of the pitch angle of a cosmic
ray particle of total momentump. These Fokker-Planck coef-
ficients depend on the tensor components of the plasma wave
power spectrum< δBl(k)δBm(k) >. For a magnetic tur-
bulence tensor with no preferred direction, (Batchelor, 1953)
notes that< δBl(k)δBm(k) > can be written in the general
form

< δBl(k)δBm(k) >=
G(k)
8πk2

[δkm−
klkm
k2

]+ı
H(k)
8πk2

εlmkkk(5)

For fast-mode waves propagating either forward (phase ve-
locity ω/k = jVA, j = +1) or backward (phase velocity
ω/k = jVA, j = −1) to the ambient magnetic field an index
j is used to track the wave direction (SM) and, in princi-
ple, the magnetic helicityH(k) can also be included in the
evaluation of the Fokker-Planck coefficients. However, little
is known about any magnetic helicity term in the interstel-
lar turbulence so, in this first investigation of the effects of
wave turbulence anisotropy on the cosmic ray transport pa-
rameters, we restrict our attention to the anisotropy factor
G(k)/(8πk2).

With the identification

G(k)
8πk2

=
I0k
−(2+s)

[η2 + Λ(1− η2)](2+s)/2
(6)

it follows that the anisotropic variants of Eqs. (27)-(29) of
SM take the form

Dµµ =
2π2Ω2(1− µ2)

B2
0

∑
j=±1

Ij0

∞∑
n=−∞∫ 1

−1

dη(1 + η2)[η2 + Λ(1− η2)]−(2+s)/2

∫ kmax

kmin

dk k−s

δ[kvµη−jVAk+nΩ]
(
J
′

n(
kv(1− µ2)1/2(1− η2)1/2

|Ω|
)
)2

(7)

Dpp =
p2V 2

A

v2
Dµµ (8)

whereIj0 reflects the two intensity components of turbulence
forward and backward to the ambient magnetic field, and we
have taken both to have the same spectral shape to be in ac-
cord with observations. ThenI+

o + I−0 = I0, whereI0 is
given by Eq. (4).

These general Fokker-Planck coefficients can be split into
two parts: components withn = 0 (customarily referred to
as transit-time contributions), and components withn 6= 0
(customarily referred to as gyroresonant contributions).

4 Comparison of transit-time damping and gyroreso-
nance contributions to particle scattering

Transit-time damping does not contribute to the scattering of
particles in the interval|µ| < ε where the scattering relies
solely on the gyroresonant contribution (SM). Outside this
interval we can calculate the ratio of the contributions from
transit-time damping and gyroresonances as

R2,3(Λ) ≡
DT
µµ(Λ)

DG
µµ(Λ)

= r2,3(µ)
ATT (Λ)
AG2,3(Λ)

(9)

where the indices2, 3 refer to the intervalsε ≤ |µ| ≤ 2−1/2

and|µ| > 2−1/2, respectively. The functions

r2,3(Λ) ≡
DT
µµ(Λ = 1)

DG
µµ(Λ = 1)

(10)

refer to the corresponding ratios for isotropic turbulence (see
SM).

4.1 Intervalε < |µ| ≤ 2−1/2

4.1.1 Strongly perpendicular anisotropy (Λ << 1)

For strongly perpendicular anisotropy we obtain

R2(Λ << 1) '
Γ[ 2+s

2 ]
π1/2Γ[ 2+s

2 ]{
µ2+sε−2(2+s)Λ1/2 for Λ << ε2 << 1
s+1

2s(s+2)ε
−(2+s)Λ−1/2 for ε2 ≤ Λ << 1 (11)

which is much larger than unity unlessΛ ≤ ε2(2+s) is ex-
tremely small.

4.1.2 Strongly ribbon-like anisotropy (Λ >> 1)

For strongly parallel anisotropy we derive

R2(Λ >> 1) '
Γ[ 2+s

2 ]
2π1/2Γ[ 2+s

2 ]{
ε−(2+s)Λ1/2 for ε ≤ |µ| ≤ ε(1 + 1

2Λ )
ε−(2+s)Λ−(s+1)/2 for |µ| > ε(1 + 1

2Λ

(12)

which in the small intervalε ≤ |µ| ≤ ε(1 + 1
2Λ ) is always

much larger than unity. Outside this interval, i.e.|µ| > ε(1+
1

2Λ ) the ratioR2(Λ >> 1) is much larger than unity unless
Λ > ε−2(2+s)/(s+1) becomes extremely large.
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4.2 Interval|µ| > 2−1/2

4.2.1 Strongly perpendicular anisotropy (Λ << 1)

For strongly perpendicular anisotropy we obtain

R3(Λ << 1) '
Γ[ 2+s

2 ]
π1/2Γ[ 2+s

2 ]

{
µ2+sε2+sΛ1/2 for Λ << ε2 << 1
s+1

2s(s+2)Λ−1/2 for ε2 ≤ Λ << 1 (13)

which is much larger than unity unlessΛ ≤ ε2(2+s) is ex-
tremely small.

4.2.2 Strongly ribbon-like anisotropy (Λ >> 1)

For strongly parallel anisotropy we derive

R3(Λ >> 1) '
O3g(s)Γ[ 2+s

2 ]
2π1/2Γ[ 2+s

2 ]
Λ−(s+1)/2 (14)

which is much smaller than unity.

4.3 Interlude

Summarizing our results in short:
(a) For massively parallel (Λ >> 1) situations, the ratios of
the transit-time contribution to the gyroresonance contribu-
tion to pitch-angle scattering in the interval|µ| > ε of cos-
mic ray particles with gyroradiiRL < lmax/2π behave as
follows:
– for large |µ| > 2−1/2 the ratio is smaller than unity in-
dicating that the gyroresonance contribution dominates the
transit-time damping contribution,
– in the small intervalε ≤ |µ| ≤ ε(1 + 1

2Λ ) the ratio is
larger than unity indicating that the transit-time contribution
dominates the gyroresonance contribution,
– in the intervalε(1 + 1

2Λ ) < |µ| ≤ 2−1/2 the ratio is larger
than unity (i.e. dominance of the transit-time damping con-
tribution) for anisotropy values smaller than1 << Λ ≤ Λl ≡
ε−2(2+s)/(s+1) whereas for extremely large values ofΛ > Λl
the ratio is smaller than unity (i.e. dominance of the gyrores-
onance contribution).
(b) For massively perpendicular (Λ << 1) situations, the ra-
tio of the transit-time contribution to the gyroresoance con-
tribution to pitch-angle scattering in the interval|µ| > ε of
cosmic ray particles with gyroradiiRL < lmax/2π is much
larger than unity for anisotropy values larger thanε2(2+s) ≡
Λs ≤ Λ << 1 indicating that the transit-time damping con-
tribution dominates the gyroresonance contribution.
For extremely small anisotropy valuesΛ < Λs << 1 the ra-
tio is smaller than unity indicating the dominance of the gy-
roresonance contribution over the transit-time damping con-
tribution.

4.4 Cosmic ray scattering in the interstellar medium

Using the estimates of the Alfven speed in the diffuse inter-
stellar medium ofVA ' 3 · 106 cm s−1 (Minter and Span-
gler (1997)) yields for relativistic cosmic ray particles the
value ε = VA/v ' VA/c = 10−4. With a turbulence
spectral index ofs = 5/3 (Rickett, 1990) we obtain for
Λl = ε−2(2+s)/(s+1) = ε−11/4 = 1011 andΛs = ε2(2+s) =
ε22/3 = 10−88/3 = 2 · 10−29, respectively.

Now, estimates of the anisotropy parameterΛ in the strong-
ly parallel situation (Λ >> 1) based on linear Landau damp-
ing balancing radiative loss in the diffuse interstellar medium,
provide the valueΛ ' 7400 (Lerche and Schlickeiser, 2001)
which is much smaller thanΛl. Hence, it would seem that
in the diffuse interstellar medium the transit-time damping
contribution toDµµ is dominant in the pitch-angle angle in-
terval ε ≤ |µ| ≤ 2−1/2 whereas the gyroresonant contri-
bution dominates in the intervalµ| > 2−1/2. The same
conclusion holds in HII-regions (the fluctiferous domain of
Spangler (1991)), for which Lerche and Schlickeiser (2001)
estimatedΛ ' 17.7.

Estimates of the anisotropy parameterΛ in the strongly
perpendicular situation (Λ << 1) based on linear Landau
damping balancing radiative loss in the diffuse interstellar
medium, provide the valueΛ ' 6·10−5 (Lerche and Schlick-
eiser, 2001) which is much larger thanΛs. This indicates that
the transit-time damping contribution dominates the gyrores-
onance contribution throughout the whole pitch-angle inter-
val |µ| ≥ ε in the diffuse interstellar medium. The same con-
clusion holds in HII-regions, for which Lerche and Schlick-
eiser (2001) estimatedΛ ' 10−3 in this case. Here, we
restrict our analysis on the momentum diffusion coefficient
which, according to SM, is solely determined by the transit-
time damping contribution.

5 Cosmic ray momentum diffusion from fast-mode waves

We obtain for the momentum diffusion coefficient of cosmic
rays with gyroradii much less thanRL << lmax/2π

a2 =
π

2
(s−1)c1(s)

(δB)2

B2
0

(kminRL)s−1 vε
2p2

RL
h(Λ, ε, s)(15)

with

c1(s) =
∫ ∞

0

du u−(1+s)J2
1 (u) =

21−ss

4− s2

Γ[s]Γ[2− s
2 ]

Γ3[1 + s
2 ]

and the anisotropy function

h(Λ, ε, s) ≡
∫ 1

ε

dµ ATT (µ,Λ)
1− µ2

µ

[1 +
ε2

µ2
][(1− µ2)(1− ε2

µ2
)]s/2 (16)
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5.1 Isotropic turbulenceΛ = 1

This caseATT = 1 has been considered before by SM who
derived

h(Λ = 1) = (1− ε2)D(ε,
s

2
) (17)

after substitutingy = [(1−µ2)(1− ε2

µ2 )]1/2 in Eq. (16) with
the integral

D(ε, k) ≡
∫ (1−ε)2

0

dyyk
[
[y − (1− ε)2][[y − (1 + ε)2]

]−1/2

= (1− ε)(1− ε2)kQk
(1 + ε2

1− ε2
)

(18)

which can be solved as an associated Legendre function of
the second kind of zeroeth order and degreek. SM noted
that the latter approaches→ ln ε−1 for smallε << 1, so that

h(Λ = 1) ' (1− ε)(1− ε2)(2+s)/2 ln ε−1 ' ln ε−1 (19)

5.2 Strongly perpendicular turbulenceε2 ≤ Λ < 1

Here we obtain

h(ε2 ≤ Λ << 1, ε, s) '
∫ 1

ε

dµ
1
µ

[1 +
ε2

µ2
][(1− µ2)(1 +

ε2

µ2
)]g (20)

with g = (s2 + 4s+ 2)/2(s+ 2). With Eq. (18) we obtain

h(ε2 ≤ Λ << 1, ε, s) ' 3 + ε2

2
D(ε, q)− 1

2
D(ε, q + 1)

' (1− ε)(1− ε2)q ln ε−1 ' ln ε−1 (21)

the same result as in the isotropic case.

5.3 Strongly parallel turbulence1 << Λ << Λl

Here we obtain

h(1 << Λ << Λl, ε, s) ' sΛε−(2+s)K1 +
s

2
Λ−s/2K2 (22)

with

K1 ' ε2+sΛ−(2+s)/2 (23)

and

K2 ' ln ε−1 +
1

2Λ
(24)

so that

h(1 << Λ << Λl, ε, s) '
s

2
Λ−s/2 ln ε−1 (25)

which is strongly reduced compared to the isotropic value.

6 Summary and conclusions

Observations of interstellar scintillations, general theoretical
considerations and comparison of interstellar radiative cool-
ing in HII-regions and in the diffuse interstellar medium with
linear Landau damping estimates for fast-mode decay, all
strongly imply that the power spectrum of fast-mode wave
turbulence in the interstellar medium must be highly anisotro-
pic. It is not clear from the observations whether the turbu-
lence spectrum is oriented mainly parallel or mainly perpen-
dicular to the ambient magnetic field, either will satisfy the
needs of balancing wave damping energy input against radia-
tive cooling. This anisotropy must be included when trans-
port of high energy cosmic rays in the Galaxy is discussed.
We show that in nearly all situations the pitch-angle scatter-
ing of relativistic cosmic rays by fast magnetosonic waves at
pitch-angle cosines|µ| ≥ VA/c is dominated by the transit-
time damping interaction.

Without considering the influence of the anisotropy pa-
rameter on the Fokker-Planck coefficients in the case of shear
Alfven waves, we are able to calculate the momentum diffu-
sion coefficienta2 of cosmic ray particles by averaging the
respective Fokker-Planck coefficient over the particle pitch-
angle for the relevant anisotropy parameters within values of
10−8 ≤ Λ ≤ 1011. For strongly perpendicular turbulence
(Λ < 1) we obtain the same cosmic ray momentum diffu-
sion coefficient as in the case of isotropic (Λ = 1), whereas
for strongly parallel turbulence (Λ >> 1) the momentum
diffusion coefficient is reduced with respect to isotropic tur-
bulence by the large factor2Λs/2/s. This implies that the ac-
celeration time scale of cosmic ray particles by momentum
diffusion for strongly parallel turbulence is smaller by the
same reduction factor with respect to the case of isotropic tur-
bulence, which for large enough anisotropy factorsΛ would
justify to neglect effects of reacceleration in the transport of
galactic cosmic rays.
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