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Abstract. The heating rate of the diffuse interstellar medium
is calculated from collisionless dissipation of magnetohydro-
dynamic plasma waves by linear Landau damping. The nu-
merical estimates produced for linear Landau damping in-
dicate that there is little, if any, disparity between radiative
cooling rates and wave energy loss rates for the fluctifer-
ous (H II-regions) and the diffuse interstellar medium when
the anisotropy in the wave power spectrum is properly ac-
counted for. Our results show that the interstellar turbulence
mostly consists of obliquely propagating compressive fast
magnetosonic waves. However, the power spectrum of these
waves is not isotropic in wavenumber space but has to be
very anisotropic, either elongated mainly along or perpen-
dicular to the ordered magnetic field component.

1 Introduction

According to current understanding the interstellar medium
consists of at least three distint phases in approximate pres-
sure equilibrium: cold clouds, warm intercloud medium, and
hot coronal gas generated by supernova explosions (Cox and
Smith, 1974). Spitzer (1956) originally postulated the exis-
tence of hot (3 · 105 K≤ T ≤ 106 K) coronal gas which
was later confirmed by observations of ultraviolet absorption
lines (Jenkins, 1978; Hartquist and Snijders, 1982) and stud-
ies of the diffuse soft X-ray background (McCammon and
Sanders, 1990). 21 cm radio studies indicate that the warm
medium has a temperature between 6000 and 104 K and a
mean HI-density of about 0.8 cm−3, but is very stuctured
in colder clouds and a warm intercloud medium of density
0.1-0.2 cm−3. Under such conditions atomic and metallic
radiative transitions efficiently cool the gas, so that an effi-
cient heating mechanism is required in order to maintain the
gas temperature.

Here we investigate the heating of the warm gas by the
collisionless damping of interstellar magnetohydrodynamic
waves. The collisionless dissipation of various kinds of waves
in the interstellar medium has had a long history. Underly-
ing motivations for this continued interest are to obtain a de-
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tailed understanding of the mechanisms responsible for the
heating and/or cooling of the interstellar medium (see the re-
view in Spangler (1991)), and to understand how a balance
is achieved or maintained between the competing processes.

In a theoretical description the heating (ε) and cooling (λ)
rates enter the heat conduction equation of a viscous fluid
(Landau and Lifschitz, 1982)

ρT
[∂s
∂t

+v·∇s
]

= div (κ∇T )+σik
∂vi
∂xk

+ε(ρ, T )−λ(ρ, T )(1)

wheres denotes the fluid entropy,ρ andv the fluid density
and velocity,κ is the heat conduction coefficient andσik the
viscous stress tensor. Formally, Eq. (1) can be regarded as
the fifth equation – besides the continuity equation and the
three Euler equations – of the hydrodynamical description
of a viscous fluid. Here we consider a stationary interstel-
lar medium with large spatial scales and without strong spa-
tial inhomogenities, i.e. far away from phase boundaries and
shock waves, so that to a first approximation we can neglect
all terms in Eq. (1) with spatial and time derivatives. In this
case Eq. (1) reduces to the simple balance of heating and
cooling rates

ε(ρ, T ) = λ(ρ, T ) (2)

Our discussion of the heating by collisionless Landau damp-
ing will be based on Eq. (2), and thus is valid only in the
stationary and homogenous interstellar medium.

2 Magnetic field fluctuation spectrum in the Galaxy

Due to observations of Faraday rotation and pulsar signal dis-
persion there has been substantial progress in the understand-
ing of wave spectra (see e.g. Rickett (1990)). A synthesis of
available data would seem to indicate that a power spectrum
of waves in the form

P (k) = C2
B [k2

‖ + Λk2
⊥]−(2+s)/2,

∫
d3k P (k) = (δB)2 (3)

can account for the observations (Spangler, 1991), whereδB
denotes the total fluctuating magnetic field component. Here
k‖ (k⊥) is the wavenumber parallel (perpendicular) to the
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ambient magnetic field;s is the spectral index which is esti-
mated to lie between about3/2 and5/3; Λ is the anisotropy
parameter. Isotropy occurs ifΛ = 1, whereas if the wave
turbulence is more along the lines of thin ”platelets” par-
alleling the ambient field, as suggested by Goldreich and
Sridha (1995), thenΛ >> 1. The form of the wave spec-
trum given by Eq. (3) is taken to operate only between some
small wavenumber,k = kmin, and a large wavenumber,k =
kmax, with k = |k| = [k2

‖ + k2
⊥]1/2. Spangler (1991) sug-

gests that these wavenumbers are related to outer and in-
ner scale lengths,lmin and lmax, respectively withlmin =
2π/kmax, lmax = 2π/kmin. The physical bounds oflmin

and lmax are not precisely known, but probably related to
the whistler wave resonance limit of the interstellar elec-
trons and the physical size of the warm intercloud medium
i.e. the mean cloud distance, respectively. The inner scale
is estimated by Spangler (1991) to be of the general order
of lmin = 107l7 cm, (l7 = 1), with the outer scale of or-
der lmax = 1017L17 cm with L17 = 1 in hot, ionized re-
gions, andL17 = 30 in the diffuse phase of the interstellar
medium. In our study here we assume that the power spec-
trum (3) holds in the stationary and homogenous warm inter-
cloud medium.

The power spectrum itself results from the balance of all
wave damping and driving processes, although a detailed the-
ory and explanation currently is not available. Therefore our
calculation will be limited in the sense that we assume a
given and fixed power spectrum to determine the heating rate
of the interstellar medium, but we do not self-consistently in-
vestigate the effect of this energy loss rate on the form of the
power spectrum.

3 Energy loss rate

For waves damping at a rateγ(k), the energy loss rateε is
conventionally written in the form (Spangler, 1991)

ε =
1

4π

∫
d3k P (k)2γ(k). (4)

3.1 Oblique wave reduction

For an obliquely propagating magnetosonic wave the damp-
ing rate is given by (Ginzburg 1961, p.218, Eq. 14.56) as

γ = (
π

8
)1/2 sin2 θ sec θkvi

[
(vi/ve)+

5 exp[−V 2
A/(2v

2
i cos2 θ)]

]
, (5)

wheresin θ = |k⊥|/k, VA is the Alfven speed,vi (ve) is
the ion (electron) thermal speed. Conditions are also attached
to the domain of validity of Eq. (5). These conditions, as
spelled out by Ginzburg (1961), are:
(1) Both ions and electrons are taken to be at the same tem-
perature and both are described by isotropic Maxwellian dis-
tributions,ve = (kBT/me)1/2, vi = ve(me/mi)1/2;
(2) One must haveVA >> vi andve >> vi;

(3) Eq. (5) is valid only in the angular range described through

ve| cos θ| >> [V 2
A + 3v2

i sin2 θ]1/2 >> vi| cos θ|. (6)

The left part of inequality (6) provides the restriction

| cos θ| ≥ µL ≡ [
V 2
A + 3v2

i

v2
e + 3v2

i

]1/2. (7)

In general,µL ' VA/ve << 1 for the cases of interest later
in this paper. The right part of inequality (6) is always satis-
fied when condition 2 is in force.

The exponential factorexp[−V 2
A/(2v

2
i cos2 θ)] varies be-

tweenexp[−V 2
A/(2v

2
i )] andexp[−v2

e/(2v
2
i )] as | cos θ| tra-

verses1 ≥ | cos θ| ≥ µL. Because both of these exponential
factors are exceedingly small one can write, to a very accu-
rate approximation, that

γ ' (
π

8
)1/2 sin2 θ sec θkv2

i v
−1
e . (8)

As mentioned, Eqs. (5) and (8) are valid for isotropic Max-
wellians withTe = Ti. This assumption is adopted here
because we want to evaluate the heating rate with the same
input parameters as Spangler (1991) to allow the direct com-
parison of our calculation with his. In future work we want
to consider collisionless heating rates also for an interstel-
lar mediumin NLTE conditions as X-ray absorption studies
lead toTe > Ti and ordered magnetic fields may enforce
anisotropic temperatures (T‖ 6= T⊥). Both cases require the
determination of appropriate, more general damping rates in
these changed plasma conditions.

With the damping rate (8), using spherical coordinates for
k, the energy loss rate can then be written

ε = (
π

2
)1/2C2

B v
2
i v
−1
e

k2−s
max − k2−s

min

2− s
I(µL,Λ, s) (9)

with the integral

I(µL,Λ, s) ≡
∫ 1

µL

dµ
(1− µ2)

µ[µ2 + Λ(1− µ2)]1+(s/2)
(10)

Note that the lower limit of theµ-integral has been set toµ =
µL whereas the Ginzburg (1961) damping formula is really
valid in µ >> µL. Thus Eq. (9) provides an overestimate of
the energy loss rate.

3.2 Fluctuating magnetic field

¿From Eqs. (3) we derive

(δB)2 = 4πC2
B

k1−s
min

s− 1
[1− (kmin/kmax)s−1]J(Λ, s) (11)

whereJ(Λ = 1, s) = 1 and forΛ 6= 1

J(Λ) =
∫ 1

0

dµ[µ2 + Λ(1− µ2)]−(2+s)/2

= 2F1(1 +
s

2
, 1;

3
2

; 1− Λ) (12)
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Fig. 1. Variation of the energy loss rate as a function of the
anisotropy parameterΛ for a turbulence spectral indexs = 5/3
andµL = 0.05.

3.3 Final energy loss rate

Solving Eq. (11) forC2
B and inserting the result in Eq. (9)

we obtain the final expression for the energy loss rate

ε(Λ) = ε0
I(µL,Λ, s)
J(Λ, s)

, (13)

εisotropic = ε0[ln(
ve
VA

)− 1/2] (14)

with

ε0 = (
π

2
)1/2(4π)−1 s− 1

2− s
[1− (kmin/kmax)2−s]
[1− (kmin/kmax)s−1]

k2−s
maxk

s−1
min (δB)2 v2

i v
−1
e (15)

In Fig. 1 we have numerically calculated the variation of
the energy loss rate as a function of the anisotropy parame-
ter Λ for the turbulence spectral indexs = 5/3 andµL '
VA/ve = 0.05. It can be seen that in this case the energy loss
rate attains its maximum at values at aboutΛ ' 10−2 and
that it varies with different functional dependences at small
or large values ofΛ.

4 Different limits of the anisotropy parameter Λ

In Table 1 we summarize approximations of the energy loss
rate for different values of the anisotropy parameterΛ. µL is
related to the instellar plasma betaβ = B2

0/(8πnekBT ) as

µL = (
2meβ

mp
)1/2 = 0.033β1/2 (16)

According to Table 1 we find the largest energy loss rates in
the case of isotropic turbulence (Λ = 1) and about twice that

loss rate for anisotropic turbulence withµL << Λ << 1.
In the other anistropic cases the energy loss rates are much
smaller than in the isotropic case with the relevant reduction
factors given in Table 1. In the following section we there-
fore calculate quantitative energy loss rates in the interstellar
medium for the case of isotropic turbulence. With the help
of Table 1 it is then straightforward to infer the energy loss
rates for any anisotropic case.

5 Results and conclusions

5.1 HII regions

Spangler (1991) has argued that the wave damping is most
appropriate for his ”fluctiferous” media, taken to be described
by HII regions. In our numerical estimate of the isotropic en-
ergy loss rate we adopt exactly the same parameter values
as given by Spangler (1991), thereby revealing most clearly
the differences between our calculations and his values. Ac-
cording to Spangler the parameters of relevance arel7 = 1,
L17 = 1, s = 5/3, ve = 2 · 107 cm s−1 (corresponding
to a temperature of about 104 K), VA = 106 cm s−1 (so
ve >> VA as required for the Ginzburg damping formula to
be valid),vi = ve/43, and(δB) = 0.3µG. With Eq. (14) we
obtain

εisotropic = 6.61 · 10−23 L
−2/3
17 l

−1/3
7 erg s−1cm−3 (17)

If the outer scale lengthlmax is increased to 1 pc (L17 =
30) then εisotropic is reduced by a factor302/3 = 9.65, as
are all other cases. If the magnetic field fluctuations are in-
creased to 1µG from 0.3µG then also the energy loss rate
(17) is increased by almost an order of magnitude.

The corresponding radiative cooling rate in this fluctifer-
ous medium is given by Spangler (1991) as about10−23n2

e

erg s−1 cm−3 so that, all other factors being equal, there is
little disparity between the wave energy loss rate and the ra-
diative cooling rate. Indeed, given the uncertainties on the
values of(δB), lmax andlmin, it is remarkable that the rates
are as close as they are. The factor 6.6 enhancement of the
isotropic energy loss rate (17) can be accounted for easily
either by
(i) a large anisotropy factor35Λ5/6 = 6.6 corrresponding to
Λ = 17.7,

or
(ii) a small anisotropy factor(400Λ)11/6 = 1/6.6 corre-
sponding toΛ = 10−3.

5.2 Diffuse interstellar medium

For the diffuse interstellar medium Minter and Spangler (1997)
give a larger value forδB = 0.9µG, and also give the outer
and inner scales,L17 = 30, l7 = 8, while all other turbulence
parameters remain unchanged. The isotropic energy loss rate
(17) then reduces slightly to

εisotropic = 3.08 · 10−23 erg s−1cm−3 (18)
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Table 1. Energy loss rates for different anisotropy parameters

Anisotropy parameterΛ ε/εisotropic

Λ = 1 1
Λ = 1− η, |η| << 1 1 + 2

3
(1 + s

2
)(1− Λ)

Λ ≤ (VA/ve)
2 << 1 [

Λv2
e

V 2
A

](2+s)/2[ln(ve/VA)− 1
2
]−1 << 1

(VA/ve)
2 ≤ Λ << 1 ln(Λv2

e/V
2
A)[ln(ve/VA)− 1

2
]−1 ≤ 2

Λ >> 1 sΛ−s/2 << 1

According to Minter and Spangler (1997) the radiative cool-
ing rate in the diffuse interstellar medium at temperatures
of 104 K is LR = 5 · 10−24n2

e erg s−1cm−3. With an
electron density ofne = 0.08 cm−3 this implies typically
LR = 3·10−26 erg s−1cm−3. The factor of103 enhancement
in the energy loss rate (18) can again be accounted for by ei-
ther a large anisotropy factorΛ = 7400 or a small anisotropy
factorΛ = 6 · 10−5.

5.3 Nature of interstellar turbulence

The rather close agreement of our linear Landau damping
heating rates with the radiative cooling rate in interstellar
HII regions and in the diffuse interstellar medium modifies
the result of Minter and Spangler (1997) who, on the basis of
the calculation of Spangler (1991), conclude that the heating
rate by linear Landau damping exceeds, in all cases, the ra-
diative cooling rate of the diffuse interstellar medium by 3-4
orders of magnitude. Because we evaluated our heating rates
with the exact damping formula and exact input turbulence
wave spectra this modification results from the manner of
computation of the energy loss rate (4) by Spangler (1991).
The integrals must be correctly integrated over all propaga-
tion angles of the plasma waves; the final result cannot then
depend anymore on the wave propagation angle, unlike Eq.
(15) of Spangler (1991) and Eq. (8) of Minter and Spangler
(1997).

In particular, the conclusion of Minter and Spangler (1997),
that interstellar turbulence does not behave like an ensem-
ble of obliquely propagating fast magnetosonic waves, is not
valid. Quite the opposite is true: the close match of Lan-
dau damping heating rate and the interstellar radiative cool-
ing rate strongly supports the argument that interstellar turbu-
lence mostly consists of obliquely propagating compressive
fast magnetosonic waves. However, the power spectrum of
these waves is not isotropic in wavenumber space but has to
be very anisotropic withΛ ' 10−3 or Λ ' 18 in the fluctif-
erous (H II) medium and withΛ ' 6 · 10−5 or Λ ' 7000 in
the diffuse interstellar medium. This determination of highly
anisotropic wave spectra is in accord with the theoretical ar-
guments advanced by Goldreich and Sridha (1995) who con-
vincingly argued for ribbon-like turbulence roughly parallel-
ing the ambient magnetic field.

5.4 Summary

Because of the ongoing efforts to obtain an understanding of
energy production and loss rates in the interstellar medium,

with plasma waves being considered an integral component,
it is necessary to continually update wave energy loss rates
in the light of improvements in observations and their inter-
pretations.

When considering individual plasma wave types, two fac-
tors are of importance. First, the approximations and con-
ditions under which the wave damping rates are produced
must be honored to ensure that one does not step outside the
domain of validity of the approximation. Second, when in-
tegrating over a wave spectrum due care and diligence must
be given in performing the integrals as accurately as possible
and not approximating too early in the development. Failure
to take such care can lead to inappropriate wave energy loss
rates which do not reflect correctly the exact expressions.

The numerical estimates produced for linear Landau damp-
ing, using values from Spangler (1991), would seem to in-
dicate that there is little, if any, disparity between radiative
cooling rates and wave energy loss rates for the fluctiferous
(H II) and the diffuse interstellar medium when the anisotropy
in the wave power spectrum is properly accounted for. Our
results indicate that the interstellar turbulence mostly con-
sists of obliquely propagating compressive fast magnetosonic
waves. However, the power spectrum of these waves is not
isotropic in wavenumber space but has to be very anisotropic,
either elongated highly along or perpendicular to the ordered
magnetic field component.
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