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Abstract. The interaction of supernovae with their surround-
ings has been studied with hydrodynamical codes which cap-
ture the shock waves produced when the ejecta interact with
the medium close to the progenitor star. Observationally it
is known that core-collapse supernovae, of which SN1987A
and SN1993J are two well-studied examples, emit nonther-
mal radiation which is associated with electron acceleration
at these shock waves. We present a model for the transport
and acceleration of test particles in hydrodynamical simula-
tions of young radio supernovae.

1 Introduction

Multidimensional hydrodynamical codes are widely used to
study the ejecta from a supernova explosion and their inter-
action with the circumstellar environment (e.g. Blondin &
Lundqvist 1993; Jun & Jones 1999; Dwarkadas 2000). These
simulations allow us to picture the complex interaction be-
tween the matter ejected in the explosion and the surround-
ing medium. Young supernovae arising from core collapse,
such as SN1987A and SN1993J, are also observed as radio
synchrotron sources, implying the presence of energetic elec-
trons. These particles are believed to be accelerated at the
shock front between the ejecta and the undisturbed external
medium, before being advected downstream where they un-
dergo adiabatic losses. This physical process is not generally
included in purely hydrodynamical simulations (see however
Jun & Jones 1999), which are therefore difficult to compare
with detailed radio observations. In this paper we propose
a simple computational model which takes the data output
from a hydrodynamical simulation and uses it to solve for
the electron acceleration and transport.

The electron population is described by a kinetic transport
equation which includes the effects of advection, diffusion
and adiabatic losses. The solution of this equation is compu-
tationally intensive, particularly when more than one spatial
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dimension is relevant, even in the test particle approximation
where a given level of plasma turbulence is assumed. The
inclusion of energetic nucleons, which can modify the shock
structure, is a further complication. Ultimately we aim to
complete the following steps for multi-dimensional flows:

– Take the data from a hydrodynamical simulation, on rel-
atively coarse spatial and temporal scales if necessary,
and use them to calculate the evolving distribution of
energetic electrons.

– Model the evolution of the postshock magnetic field in
order to construct synthetic radio images of the source.

– Include the effect of energetic nucleons on the hydrody-
namics, as in Duffy, Ball & Kirk (1995), from which the
electron population and radio emission is calculated.

In this paper we discuss a method to perform the first of
these steps in a one-dimensional, spherically symmetric sys-
tem. Section 2 outlines the hydrodynamical method used,
section 3 details the electron transport and acceleration
scheme, and the results are discussed in section 4.

2 Hydrodynamics

The simulations described herein were carried out using the
VH-1 code, a one, two or 3-dimensional code based on the
Piecewise Parabolic Method of Colella and Woodward (1984).
This shock-capturing code works by solving the Riemann
problem at each zone interface, and uses parabolic (rather
than linear) interpolation for the variables. In order to track
the shock velocities at various zones at successive timesteps,
a grid of fixed size was used employing a very large number
of zones, typically 10000 to 15000.

The nature of the ejecta density distribution of Type II
supernovae is not well known. Explosion models for the
progenitor of SN1987A appear to indicate that the density
falls off with radius approximately as a power-law with in-
dex close to−9 (i.e.ρ ∝ r−9; Luo, McCray & Slavin 1994).
Power-law density profiles are quite commonly used in mod-
elling, if only because the interaction of a supernova with a
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Fig. 1. Density profiles for an explosion in a constant density envi-
ronment, at four epochs; 1: 5.2yr, 2: 40.6yr, 3: 119.0yr, 4: 224.0yr.

power-law density profile with a surrounding medium whose
density also decreases as a power-law with radius can be de-
scribed by an analytic, self-similar solution (Chevalier 1982).
As a starting point we describe the ejecta density by a power-
law with an index of−7. Since the ejected mass and energy
of the explosion must be finite, the power-law cannot extend
back to zero radius. Typically the density is taken to be uni-
form for ejecta velocities below a certain transition velocity,
which can be computed from the ejected mass and energy of
the explosion.

Core-collapse supernovae arise from massive stars. As the
star evolves through the HR diagram, a wind driven off by
it may appreciably alter the surrounding medium. When
the star explodes as a supernova, the resulting shock wave
will interact, at least initially, with this modified circumstel-
lar medium. If the wind properties are constant, the density
of the surrounding medium will fall off asr−2. We exam-
ine both this case and the situation where the supernova ex-
pands into a constant density interstellar medium unaffected
by a wind from the progenitor. In the latter case we assume
ρ = 2.34 × 10−24 g cm−3, appropriate for an interstellar
medium with a 10:1 ratio of H:He.

The simulations are initiated by assuming an appropriate
ejecta density profile up to a contact radius, beyond which the
density profile is that of the surrounding medium undisturbed
by the explosion. The initial contact radius can be obtained
from the self-similar solution. The expansion of the super-
nova ejecta into the surrounding medium gives rise to two
shocks separated by a contact discontinuity. The outer shock
expands into the ambient medium. The inner shock also
moves outwards initially, but it does so more slowly than the
fastest ejecta. The region between the inner (reverse) shock
and the contact discontinuity consists of shocked ejecta, and
the ambient medium is shocked and swept up into a shell
between the outer shock and the contact discontinuity.

Figures 1 and 2 show representative plots of the density
and velocity profiles respectively, at four different epochs,

Fig. 2. Velocity profiles for an explosion in a constant density envi-
ronment, at epochs 1: 5.2yr, 2: 40.6yr, 3: 119.0yr, 4: 224.0yr.

for expansion into a constant density medium. Figures 3
and 4 display the corresponding results for an explosion in a
medium with density∝ r−2. In both cases the double shock
structure is clearly evident in the density and velocity plots
at the later three epochs. Both shocks are strong, with a den-
sity jump of 4. The self-similar nature of the expansion is
apparent; the shape of the double shocked structure remains
essentially the same while it increases in size. The density at
the contact discontinuity drops asymptotically to zero for ex-
pansion into a constant density medium, and rises to infinity
for the wind case. The velocity does not change across the
contact discontinuity, and there is little difference between
the velocity profiles in the two cases.

3 Electron transport and acceleration

In the presence of MHD waves, which are advected with
the flow and which scatter and isotropise energetic particles,
the transport equation for the electron phase space density
f(r, p, t) is

∂f

∂t
+ v · ∇f = ∇κ∇f +

1
3
∇ · vp∂f

∂p
(1)

wherev(r, t) is the bulk fluid flow velocity andκ is the par-
ticle diffusion coefficient. While it is possible in principle to
solve this full kinetic equation using flow data from a hydro-
dynamical simulation, such an approach is computationally
intensive compared to solving the fluid equations because of
the extra dependence on the particle momentum. To reduce
the computational burden we adopt an approach used in pre-
vious work (e.g. Ball & Kirk 1992) in which acceleration and
transport are effectively separated.

We consider electrons which diffuse, with coefficientκ,
around a shock front because of scattering by magnetic struc-
tures advected with the flow. The scattering ensures that the
electron distribution remains almost isotropic. In the rest
frame of the forward shock the upstream flow speed at a
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Fig. 3. Density profiles for an explosion in a wind with density
∝ r−2, at epochs 1: 47.4yr, 2: 288.8yr, 3: 669.0yr, 4: 998.0yr.

given instant is denoted byv1 and that downstream of the
shock byv2. These speeds are computed from the results of
the hydrodynamical simulation. In the box model of Drury
et al. (1999) only particles within a diffusive lengthscale,

L = κ

(
1
v1

+
1
v2

)
, (2)

of the shock interact effectively with it. The differential num-
ber of particles of momentump in the box is4πp2fsL, where
fs(p, t) the momentum space distribution of particles in the
shock’s vicinity averaged over the box sizeL. These par-
ticles are scattered back and forth across the shock by the
magnetic turbulence and there is a flux of particles upwards
in momentum at the shock given by

Φ =
4πp3

3
fs(p, t)(v1 − v2) . (3)

For monoenergetic injection (at the shock front) at momen-
tump0, there is a source term of the formQδ(p− p0). Parti-
cles are also advected out of the acceleration region at speed
v2 so that particle conservation gives the equation

∂

∂t

[
4π2fsL

]
= −∂Φ

∂p
− v24πp2fs +Qδ(p− p0) . (4)

Equation (4) is only valid in the absence of radiative losses,
which will be negligible for the electrons responsible for ra-
dio emission in young supernovae, but such losses can also
be included (Drury et al. 1999). WhenL is constant (which
is not assumed in our numerical calculations) we have

∂fs
∂t

= − p

ta

∂fs
∂p
− q

ta
fs +

Qδ(p− p0)
4πp2L

, (5)

whereta ≡ 3L/(v1 − v2) is the acceleration timescale and
q ≡ 3v1/(v1 − v2). For momenta away from injection (i.e.
for p > p0), and in the steady state, the solution to equation
(5) is fs ∝ p−q as in the analytic test particle treatment of
diffusive shock acceleration.

Fig. 4. Velocity profiles for an explosion in a wind with density
∝ r−2, at epochs 1: 47.4yr, 2: 288.8yr, 3: 669.0yr, 4: 998.0yr.

The shock accelerated particles are ultimately advected
away from the acceleration zone, and the dominant processes
are then advection with the local fluid flow and adiabatic
losses. The downstream distribution,f(r, p, t), therefore
evolves according to

∂f

∂t
+ v · ∇f − 1

3
∇ · vp∂f

∂p
= 0 (6)

which is to be solved subject to the boundary condition
f(rs, p, t) = fs(p, t).

4 Numerical solution and results

Starting from the onset of electron injection at timet0, flow
data are extracted from the hydrodynamical results and used
to calculate the electron distribution. The acceleration and
transport calculations thus introduce four model parameters:
ta, t0, Q andp0. The explicit numerical method for the hy-
drodynamics is necessarily stable and therefore satisfies the
Courant-Friedrich-Lewy stability condition. However, the
data for the calculation of the electron distribution are not
usually extracted on the finest spatial and temporal scales
used in the hydrodynamical calculations, which covers some
ten to fifteen thousand cells in space. The data extracted from
the hydrodynamical results could be at such a coarse resolu-
tion that anyexplicit numerical method for the electron ac-
celeration and transport, used on that reduced data set, could
be unconditionally unstable. We therefore use animplicit nu-
merical method for the spatial part of the electron transport.

Introducing a new independent variabley ≡ ln(p/p0) and
defininggs(p, t) = pq0fs(p, t), whereq0 = 3v1(t0)/[v1(t0)−
v2(t0)], equation (5) becomes

∂gs
∂t

= − 1
ta

∂gs
∂y

+ (q0 − q) gs +
Qδ(p− p0)

4πp2L
. (7)

We use an explicit upwind scheme to solve equation (7),
which introduces a lower limit on the cell width in the vari-
able y given by ∆y = max(∆t)/ta, wheremax(∆t) is



2049

-25

-20

-15

-10

-5

0 1 2 3 4

Plot of g(y) aganist y

1 2 3

Fig. 5. The energetic electron distribution, multiplied byp4 and
integrated over the entire downstream region, as a function ofy
for an explosion in a constant density medium, at 1:t1 = 46 yr,
2: t2 = 121 yr and 3: t3 = 232 yr. The acceleration time is
ta = 25 yr and injection is switched on att0 = 4 yr.

the largest timestep provided from the hydrodynamical data.
The spectrum can therefore only be resolved to an acceptable
level of accuracy if the acceleration timescale is several times
greater than the typical timesteps used in the hydrodynamical
calculations. For SN1987A, whereta is of the order of10 to
100 days, this is an acceptable constraint.

Downstream of the shock equation (6) becomes

∂f

∂t
= −v ∂f

∂r
− vy

∂f

∂y
(8)

when spherical symmetry is assumed, and the advection speed
in logarithmic momentum space is given by

vy = − 1
3r2

∂r2v

∂r
. (9)

The conditionf(rs(t), y, t) = fs(y, t) represents the fact
that the shock leaves an accelerated spectrum of particles in
its wake. We solve equation (8) using a method which is ex-
plicit in momentum, and which does not impose a more strin-
gent stability condition than that already required by the ac-
celeration calculation. However, since data will in general be
extracted from the highly spatially resolved hydrodynamics
at much lower resolution, it is necessary to use semi-implicit
differencing in the radial coordinate. This makes the code
unconditionally stable in space and thus quite robust.

Initial results for an explosion in a constant density medium
and in a stellar wind are shown in figures 5 and 6 which show
the energetic particle distribution,p4f(r, p, t), integrated over
the entire downstream region, at three different epochs. The
data used to produce figure 5 had twice as large a timestep as
those used to generate figure 6. There are no artifacts in the
plots to suggest that the acceleration code is being affected by
the coarseness of the grid. At momenta extending upwards
from the injection momentum,p0, the computed spectrum
initially shows the expected agreement with the analytic re-
sult for acceleration at a strong shock of compression ratio of
four, i.e.f(p) ∝ p−4. The computed spectrum falls rapidly
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Fig. 6. The energetic electron distribution, multiplied byp4 and
integrated over the entire downstream region, as a function ofy for
an explosion into a circumstellar wind with density∝ r−2, at 1:
t1 = 129 yr, 2: t2 = 279 yr and 3:t3 = 447 yr. The acceleration
time ista = 25 yr and injection is switched on att0 = 11 yr.

below the asymptotic power law beyond a cutoff momentum
which increases with the time since acceleration began. Be-
low the injection momentum particles suffer adiabatic losses
– which are quite small due to the limited time covered by
these calculations – indicated by the fact that the distribution
is non-zero for a narrow range of momenta belowp0.

5 Conclusions

We have presented initial calculations of energetic electron
distributions using the results of hydrodynamical calculations
in one spatial dimension. These results demonstrate a solu-
tion of the test particle acceleration and transport problem,
using data from detailed hydrodynamical simulations, which
takes just minutes to run on a PC. Applications of our method
to more complicated models for supernova ejecta will facil-
itate the calculation of model radio synchrotron light curves
and synthetic radio images, and will help to bridge the gap
between sophisticated hydrodynamical simulations and de-
tailed radio observations.
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