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Selection of TeV~-rays using the Kernel multivariate technique
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Abstract. The Kernel multivariate analysis technique is opti- logarithm:

mised to select-ray events fronoN/OFFobservations of the

Crab Nebula recorded by the Whipple 10 m Imaging Atmo- log (R (p)) = log (fv (p)> ’ )
spheric Cherenkov Telescope in January and February 2000. fo (p)

Results are compared with the conventional Supercuts ana{/'vherep represents a point in parameter spate(p) is the
ysis and with a Neural Network analysis. The technique is

. . ) -ray probability distribution as a function of position in pa-
also applied taoN/oFF data taken on Markarian 421 during v . i
spring of 2000. A method to estimate the energy-oy pri- rameter space, anfl (p) is the background probability dis

2 . tribution. An event on one side of this surface (having a
maries is examined, and a TeV spectrum of the Crab Nebul . L
. . Ikelihood greater than or equal to this critical value of the
extracted on this basis.

likelihood function) is classified asaray, and an event on
the other side (with likelihood less than the critical value) is
classified as a background event. The calculation of these
probability distributions is the core of the Kernel technique.
1 Introduction The use of such a technique in TeMay astronomy has been
described previously by Samuelson (1999) and Moriarty and

The standard technique employed by the Whipple collabo-S@muelson (2000). It has also been applied to high energy
ration to discriminatey-rays from background events uses Physics for the detection of the top quark (Holngstr and

a number of selection cuts on the standard parameters th&@in, 1997).

characterise an atmospheric Cherenkov image. This tech-
nique, known as Supercuts (Punch et al., 1991), has bee
developed and improved over the past decade. Supercufs

implements the simplest method of delineating a parameteg inates of these probability distributions are derived from

space. In this work we examine a more comp_lex selection aI-a dataset of over 30000 sampjeray simulations and an
gorithm, the Kernel technique, and compare its performanc

o that of S ts. We al th its to th %qual number of real background events. Theyy Monte
0 that ot supercuts. Ve also compare he resuts 1o those 0Rx 5, imyations used in this work have energies ranging

tained by a Neural Network analysis (Dunlea (2001) detailsfrom 0.2 to 8 TeV distributed with a differential spectral in-

this approach). dex of —2.4. They are produced by the KASCADE system

Conventional analysis techniques have classified eventgg implemented at lowa State University by Mohanty et al.
each described by a set ofparameters, by choosing a sur- (1998), a derivative of the system described by Kertzman and
face in parameter space. Events on one side of this surfacgembroski (1994). These simulations are tailored to resem-
are classified ag-rays, and events on the other side are clas-pje the real data acquisition process as closely as possible.
sified as background. Supercuts uses a simple multidimenthe same trigger conditions are applied to the simulated data,
sional box constructed by placing fixed boundary limits on and noise comparable to that in real data is added. The result-
each parameter. An alternative approach is to choose a Surng ~-ray images should be accurate depictions Ofm&ly
face formed by the set of all points in parameter space thagyents.
Share a particular Value Of the ||ke||h00d fUnCti@] or ItS No Simp|e function can describe the distribution Of the

ray images nor the distribution of background events. The

Correspondence tdS. Dunlea (shane @ferdia.ucd.ie) Kernel technique attempts to estimate these distributions by

Kernel Analysis




2940

convolvingeachsample point with a point spread function to

obtain a smooth continuous approximation to the probabil-

ity distribution. This is analogous to estimating the electric

3 Intercomparison of Neural Network, Kernel, and Su-

percuts selection strategies

potential at some point in space due to charges at the samin order to optimise the analyses described in previous sec-

ple points, each of which has a potential function like that of

tions, a database of 3iIN/OFF pairs taken on the Crab Neb-

the point spread function. The basic kernel estimator may ba!la was established. Runs were taken during January and

written as
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wherep is again a point in parameter space, is a scale
factor, andyi, ..., yn, are vectors of parameters of the,

sampley-rays. The point spread, or kernel, functidt, can
be any scalar function in-dimensional space (Hand, 198

pP—"7

)
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Scott, 1992). In this work, a multivariate Gaussian is used as

the kernel function,

—%((p—“/)/hw)Tff((p—v)/hw), (3)
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wheren is the number of parameters agd is the covari-

ance matrix of they-ray dataset. The background distribu-
tion can be similarly defined. Scott (1992) has shown that if

the kernel is a product of univariate Gaussians (one for each

dimension), then the scale factor that minimises the mean in

February 2000, on nights with particularly clear skies. The
traditional method of testing a new technique (by optimis-
ing the significance of the detection of a signal above back-
ground) is followed here. The parameter deh@th width,
distance alpha log (size)), used in this work for both the
Neural Network and Kernel techniques, has proven to opti-
mise the capacity to discriminate betweemays and back-
ground events (see Moriarty et al. (1997) for definitions of
these parameters).

Table 1 shows the optimised significances obtained for the
Neural Network and Kernel techniques, along with the per-
centage of the-ray simulations that pass each optimised cut.
The significance and percentage of passingys for Super-
cuts 2000 is shown also for comparison.

Technique Significance Rate % sims
Neural Network 22.32 2.29ymin~ '  29.6%
Kernel 30.1% 245y min~!  27.9%
Supercuts 2000 22.48  2.63ymin~' 28.8%

tegrated squared error between an actual distribution and it$aple 1. Results of Crab Nebula data at self-optimised cuts

kernel estimator is given by

4 1/(n+4)
)

th(NﬁﬁI? @

The~-ray probability distribution may now be written as
(P*’Yi)

zh (p—vi)T€;

Similarly, f; can be defined for the background distribution,
so the log-likelihood functionlog (R), can now be calcu-
lated using Equation 1.

2.1 Reduction of Computational Overhead

Kernel analysis is computationally intensiveeagryevent is
compared withevery~-ray simulation and witleveryback-
ground event. The probability distributiofis and f, defined
by Equation 5, represent the convolution of theay simu-

Detection significance of the Neural Network technique
performs similarly to Supercuts, while the Kernel technique
performs considerably better. This improvement does not ap-
pear to be at the expense of the rate, suggesting an improve-
ment in the rejection of background events.

Table 2 presents the results of 251/0FF pairs of inde-
pendent Markarian 421 data taken between January and May
2000 using the cuts optimised on the Crab Nebula data.

Technique Significance Rate

Neural Network 13.74 1.48~y min~ '
Kernel 18.6% 1.56 min~!
Supercuts 15.78 1.98y min~!

Table 2. Results of Markarian 421 data at optimised cuts

The relative performance of each technique is not partic-
ularly different than when applied to the Crab Nebula. The
Neural Network and Supercuts techniques result in similar

lations and background samples with a point spread (kernel¥ignificances but the Neural Network cannot reproduce the
function. Therefore, the value of the log-likelihood func- same rate. The Kernel technique again realises the highest
tion, log (R), can be calculated for a lattice of pointssnin significance in theN/oFFmode, while still preserving a rea-
dimensional parameter space. Values between the nodes ebnably high rate. In contrast to the Crab Nebula results, the
the lattice can be estimated using linear piecewise interpoMarkarian 421 results are independent of the optimisation
lation. This process results in a factor of 1400 decrease irprocess, and so provide an unbiased comparison of the dif-
the time required to analyse a typical data file. However,ferent techniques.

while producing the required lattice requires many more cal- In an effort to understand the distribution of events se-
culations than a typical full Kernel analysis, it need only be lected by each technique, 2-dimensional scatter plots show-
carried out once per detector configuration. ing events that pass cuts were drawn. This analysis was per-
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formed upon 5000y-ray simulations to ensure that a large less restrictive cut based upon theay simulations, such
population of events would pass the cuts. As an examplghat 95% of the simulated events that trigger the detector are
Fig. 2 shows théengthvs.log (size) distribution of all these  accepted. Table 3 shows the significance and rate obtained
simulations followed by the distributions of evemtassing  from the 31 Crab Nebula pairs using the 95% cut for both the
the respective techniques. The complete 5-dimensional disNeural Network and Kernel techniques. Referring to Table 1,
tribution cannot be represented on paper, and while the 2- i _
dimensional plots are adequate for the present discussion, it Technique Significance Rate ;
should be remembered that points which coincide on these Neural Network 1059 4.49y min"
plots may be widely separated in 5-dimensional space. Kernel 11.66  4.28y min

It is clear that two distinct populations exist in the dis-
tribution of log (size) for the Neural Network and Kernel Taple 3. Results of the Crab Nebulan/oFF data at the 95% cut
techniques. The larger events coincide with that region seused for spectral analysis
lected by Supercuts, but a curious region of smaller events
also exists. This suggests thatay events with an interme- it is clear that this looser cut has almost doubled the accepted
diatesizeare difficult to distinguish from background events. 7-ray rate. Although the significance has been severely re-
Thus, few events in this region will pass the optimised cut.duced by the same cut, it is still appreciably high.
The close resemblance of the selection regions of the Neural Fig. 1 shows the differential spectra of the Crab Nebula,
Network and Kernel techniques endorses the merit of suctpbtained using the Neural Network and Kernel methods with
a selection. The sharp boundaries seen in the Supercuts sthe 95% cut. Table 4 lists the coefficients of the least-squares
lection region are evidence of the empirical cut on each pafower law fits as indicated on both plots along with the re-
rameter, rather than the more elegant single cut of the othegults derived previously by Hillas et al. (1998).
techniques.

Technique Spectral Index Flux Constan) (

() (m2s~ ' Tev")
4 Energy estimation and Spectral analysis Neural Network 229+0.18 (2.304+0.36) x 107
Kernel 2314015  (2.31+£0.32) x 1077

To train a Neural Network to estimate the energy of selected_Hillas etal. (1998)  2.49+£0.06  (3.20£0.17) x 1077
~-ray events, the standard parameter set ofytihay simula-
tions was used as the input to the ne_twork. The target OUtPUEapie 4. Differential Spectrum of the Crab Nebula — Quoted errors
was chosen to be the base-ten logarithm of the energy. are statistical only

To obtain they-ray probability distribution using the Ker-
nel analysis, each event must be compared with eyergy
simulation. In effect Equation 5 quantifies how similar each ,
~-ray simulation is to the event and calculates the average® Conclusion
This process naturally lends itself to the estimation of the
energy of selected events. The energy of a simulatealy
can be used to weight the calculation of its contribution to
the probability distribution. Thus, the new weighted proba-

bility distribution should be the convolution of the estimated is at the heart of much current research in Fevay astron-

energy of the event with the probability distribution. The es- omv. For the Kernel techniaue to become a standard tool for
timated energy may then be extracted by dividing this result - hvsics. i q hat it al
with the original probability distribution, ~-ray astrophysics, it must be demonstrated that it also out-

performs the standard techniques for sources on the thresh-

The results in Tables 1 and 2 show that the Kernel technique
enables sensitive discrimination betweemays and back-
ground events. However, both these sources are very strong
emitters ofy-rays. The discovery of weaker-ray sources

Ny o 1 o o NT et old of detectability. The paucity of confirmed TeV sources
B Lim B eXp( iz (P =) & %)>7 (6)  makes this a non-trivial task.

S exp (—# (-7 & (- %)) The energy spectra of the Crab Nebula derived by the Ker-

v nel spectral technique are in close agreement with the in-

whereF; is the energy of the simulategray eventy;. Ap- dependent Neural Network analysis and also with previous
plying this formula to they-ray simulations themselves gives results. All spectral techniques rely heavily gfray simu-
good energy reconstruction if the energy estimatgs mod- lations, and their accuracy is thus closely tied to the accu-
ified to £/ = 1.02E112. racy and breadth of the simulations. The range of energies

Once an energy has been estimated for each candjdate simulated clearly constrains the calculated energies of real
ray, the energy spectrum can be derived using the methodhowers. Therefore, flux values calculated for energies close
prescribed by Mohanty et al. (1998). For spectral analyses ito the energy limits of the simulations must be treated with
is desirable to have as large a population of candiglate®ys  caution. The Kernel spectral analysis requires a correction
as possible, while still maintaining a very significant detec- factor to extract the known input spectrum from theay
tion. Thus, a cut which is optimised purely on the basis of simulations. While this is not unusual in spectral analyses, it
significance is often too restrictive. In this work we use a emphasises the inherent empiricism of such techniques.
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Fig. 1. Crab Spectrum- Differential Spectrum of the Crab Nebula

determined with the Neural Network and Kernel techniques

Fig. 2. lengthvs.log (size) — Distribution ofsimulatedy-rayspass-
ing the optimised cut in the 2-dimensional parameter space defined
by lengthandlog (size)



