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Extrapolation of hadron production models to ultra-high energy
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Abstract. QCD-inspired models of high-energy hadron pro-
duction can be used to predict, among others, cross sections,
mean production multiplicities and multiplicity fluctuations.
These quantities are closely related due to the QCD factoriza-
tion theorem and Abramovski-Gribov-Kancheli cutting rules.
Focusing on the generic structure of models implementing
minijet production, we discuss QCD predictions on minijet
cross sections and constraints from HERA and Tevatron data.

1 Introduction

Almost thirty years after its proposal, QCD is now the ac-
cepted theory of strong interactions. It is clear that a success-
ful high-energy hadron production model has to be based on
or compatible with QCD predictions. However, although we
have numerous and detailed QCD predictions for large mo-
mentum transfer processes, our understanding of the bulk of
hadronic interactions is still rather limited. Any detailed cal-
culation of high-energy hadron production, as needed for the
simulation of extensive air showers, requires many additional
assumptions which cannot be justified on grounds of theoreti-
cal predictions. Often different models predict very different
particle distributions if extrapolated to high energy. These
differences can mainly be understood in terms of different
assumptions on QCD-predicted cross sections and their im-
plementation in these models (Engel, 1999b).

In the following we will discuss QCD predictions for jets
with transverse momenta in the range of 2 - 5 GeV (minijets)
and their relation to the high-energy extrapolation of QCD-
inspired models. We will emphasize model-independent quan-
tities at the expense of not always being able to present quan-
titative predictions.
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2 Inclusive minijet cross section

Thanks to asymptotic freedom, perturbative QCD allows us
to calculate jet production in binary parton-parton collisions.
The expression for the inclusive cross section reads in leading-
order perturbation theory

σ2jet(s, pcutoff
⊥ ) = K

∫
dx1dx2d

2p⊥

×
∑
i,j,k,l

1
1 + δk,l

fA,i(x1, Q
2)fB,j(x2, Q

2)
dσQCD

i,j→k,l

d2p⊥
, (1)

wherefA,i(x1, Q
2) andfB,i(x2, Q

2) are the parton distribu-
tion functions of hadronA andB for the partoni. Eq. (1)
refers to the integrated minijet cross section for jets with
transverse momentump⊥ > pcutoff

⊥ . The factorK accounts
for neglected higher-order contributions and is expected to
be approximately 2.

The QCD factorization theorem states that Eq. (1) will al-
ways have a structure which factorizes the parton densities
and the hard interaction process, independent of the order
in perturbation theory and the particular hard process. QCD
factorization holds in the limitQ2 � ΛQCD whereQ2 ∼ p2

⊥
is the hard scale of the partonic interaction process andΛQCD

is the QCD renormalization scale. It is important to notice
that the QCD factorization theorem refers to fully inclusive
processes, i.e. there are no additional conditions imposed on
the interaction of, for example, the hadronic remnants. In
particular Eq. (1) does not specify how many hard partonic
interactions happen per hadronic collision.

The minijet cross section depends strongly on the trans-
verse momentum cutoff and perturbative QCD does not pre-
dict the smallest value ofpcutoff

⊥ for which Eq. (1) is valid.
Naively one would expect an energy-independent cutoff be-
cause of the energy-independence of the conditionQ2 �
ΛQCD.

Despite these limitations, Eq. (1) is the most fundamen-
tal QCD input to hadronic interaction models such as DPM-
JET (Ranft, 1995; Roesleret al., 2000), neXus (Drescheret
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al., 2000), QGSJET (Kalmykovet al., 1997), and SIBYLL
(Fletcheret al., 1994; Engelet al., 1999a). Fig. 1 shows the
inclusive cross section for jet pairs in proton-proton colli-
sions as calculated with the GRV98 parton densities (Glück
et al., 1998). As reference the plot includes one example of
a hard cross section predicted before HERA data were avail-
able (EHLQ, set 1) (Eichtenet al., 1985). In addition, col-
lider data and the fit of Donnachie & Landshoff (1992) (DL)
for the total proton-proton cross section are also shown.
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Fig. 1. Inclusive two-jet cross section for proton-proton collisions.

Typically models implement minijet cross sections calcu-
lated with a transverse momentum cutoff of about 2 GeV (or
an equivalent type of constraint). It is clear from the com-
parison of the GRV98-based prediction forpcutoff

⊥ = 2 GeV
with the EHLQ cross section that the change from pre-HERA
to post-HERA parton densities will change the model pre-
dictions considerably. Whereas the predictions forElab ∼
1020eV are rather uncertain due to the extrapolation of the
parton densities to smallx, the hard cross section at Teva-
tron energies (Elab ∼ 1015 − 1016eV) is almost completely
determined by HERA data. Currently HERA measurements
extend down tox ∼ 10−4 (quarks) andx ∼ 3 ·10−4 (gluons)
for Q2 ∼ 4 GeV2 (Adloff et al., 2000).

Because understanding the minijet cross section is the key
to understanding particle production at high energy, it is of
great importance to determine reasonable values for the pa-
rameter it is most sensitive to, the transverse momentum cut-
off pcutoff

⊥ . Jet cross section measurements at Tevatron are
published only for large transverse momenta,p⊥ >∼ 50 GeV.
However, one can use the transverse momentum distribution
of charged particles to derive some information on the mini-
jet cross section. In Fig. 2 we show the inclusive cross sec-
tion for charged particle production at Tevatron. The leading-
order perturbative QCD predictions are calculated with PHO-
JET (Engel & Ranft, 1996) andK = 2. Although this com-
parison might be somehow biased by the limitations of the
jet fragmentation model, it strongly disfavors the calculation
with pcutoff

⊥ = 1.5 GeV. Assuming a smooth turn-over in
the cross section when approaching the transverse momen-
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Fig. 2. Inclusive charged particle cross section inpp̄ collisions at√
s = 1800 GeV. Data are from Abeet al. (1988).

tum cutoff implies that the disagreement between data and
leading-order QCD starts already atp⊥ ∼ 2.5 GeV. On the
other hand, transverse momentum spectra of charged parti-
cles are fully compatible withpcutoff

⊥ = 1.5 GeV at low en-
ergy.

3 From inclusive to exclusive cross sections

Exclusive cross sections are needed for the construction of
any complete hadron interaction and multiparticle production
model. In terms of minijet production this means specifying
the probability for havingn parton-parton interactions in a
single hadron-hadron collision. The exclusive cross sections
for the production ofn jet pairs,σ(n)

2jet, have to satisfy

σtot =
∞∑
n=0

σ
(n)
2jet σ2jet =

∞∑
n=1

n · σ(n)
2jet (2)

to reproduce exactly the QCD-predicted, inclusive minijet
cross section (1) and the total cross section known from ex-
periment.

In general, Abramovski-Gribov-Kancheli (AGK) cutting
rules (Abramovskiet al., 1974) can be used to relate exclu-
sive inelastic and elastic cross sections to each other. For in-
stance, the AGK rules specify the sign and size of the contri-
bution of an particular inelastic graph to the total and elastic
cross sections. Because of space limitations we won’t dis-
cuss in the following the cutting rules in general but only one
particular realization, the eikonal model.
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In a simple two-component eikonal approach the elastic
scattering amplitude reads

a(s,B) =
i

2
(1− exp{−χsoft(s,B)− χhard(s,B)}) , (3)

whereB denotes the impact parameter of the collision. The
eikonal functions for soft and hard interactions are given by
χk(s,B) = 1

2σk(s)Ak(s,B), withAk being the normalized
density profile function andk = soft,hard.

Applying AGK cutting rules the inelastic cross section reads

σine =
∫
d2B (1−exp{−2χ(s,B)}) =

∞∑
ns+nh>0

σnh,ns ,(4)

with the partial cross section fornh hard andns soft interac-
tions being

σnh,ns =
∫
d2B

(2χhard)nh

nh!
(2χsoft)ns

ns!
× exp{−2χsoft − 2χhard}. (5)

Assuming that each hard interaction produces a minijet-pair,
we get

σ2jet =
∞∑

nh=1

∞∑
ns=0

nh · σnh,ns = σhard. (6)
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Fig. 3. Eikonal model predictions for total and elasticpp cross sec-
tions. The data are forpp andpp̄ collisions (Avilaet al. (1999) and
Refs. therein).

The total cross section is given by the optical theorem as

σtot(s) = 4
∫
d2B =m(a(s,B)). (7)

Hence the structure of the amplitude allows us to have an
arbitrarily large inclusive minijet cross section in the eikonal
function if the profile function is of such a shape that the
scattering is restricted to impact parametersB < Bmax, with
σtot ∼ πB2

max. This means that one can always satisfy the

constraint (2). However, the amplitude (3) also predicts the
elastic cross section

σela(s) = 4
∫
d2B |a(s,B)|2. (8)

At high energy a “black disk” like amplitude is expected be-
cause fromσhard � σtot follows

a(s,B)
χhard�1−→ i

2
|B| <

√
σtot/π. (9)

As can be seen from (7) the black disk limit leads toσela =
σtot/2. Measurements indicate thatpp scattering at

√
s =

1800 GeV does not correspond to black disk scattering:
σela/σtot ∼ 0.23−0.25 (see (Engel, 2000) and Refs. therein),
though the black disk limit might have been reached for a
very small region aboutB ≈ 0.

Using data on cross sections and thet-slope of the elastic
cross sectiondσela/dt, one can derive a limit on the small-
est transverse momentum cutoff for which Eq. (2) can be
fulfilled in a consistent way. Of course, such a limit will
depend to some extent on the particular details of the con-
sidered model. In Fig. 3 fits of the amplitude (3) to total and
elastic cross section data are shown for different assumptions
on the profile functionAhard(B). For simplicity we use a
gaussian profile and vary the parameterR0

A(B) =
1

4πR2
0

exp
{
− B

2

4R2
0

}
. (10)

The soft cross section is parametrized asσsoft = σ0s
∆. Al-

though the cross section fits are shown only for the eikonal
model, the results qualitatively do not change if one consid-
ers a two-channel eikonal model as implemented in DPMJET
and SIBYLL 2.1 or the quasi-eikonal model which is the ba-
sis of QGSJET.

Assuming that the partons involved in jet production are
uniformly distributed in transverse space all over the proton,
we findpcutoff

⊥ = 3.5 GeV as a lower limit for the transverse
momentum cutoff. The situation changes drastically if we
take the possibility of parton clustering into account which
might lead to a smallerR0 parameter. For example, forR2

0 =
1.5 GeV−2 we getpcutoff

⊥ = 2.5 GeV as limit.
Indeed there are experimental indications that partons are

distributed in clusters inside the proton. The CDF Collab.
measured the ratio of 4-jet events to 2-jet events for a jet
transverse energy cutoff of 5 GeV (Abeet al., 1997). To
interpret the CDF data it is convenient to express this ratio
in terms of the effective cross section (Calucci & Treleani,
1999)

σeff =
1
2

[σ2jet]2

σ4jet
=

〈nh〉2

〈nh(nh − 1)〉
. (11)

Within the eikonal model this can be simplified to

σeff =
1∫

d2B [Ahard(B)]2
gaussian

= 8πR2
0, (12)

where the RHS is valid only for a gaussian distribution. The
CDF result ofσeff = 14.5±1.7+1.7

−2.3 mb corresponds toR2
0 =

1.5 GeV−2.
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Fig. 4. Charged particle multiplicity distribution as measured by
E735 (Alexopolouset al., 1998). The data are compared to eikonal
model predictions for two different minijet cross sections and den-
sity profiles.

The clustering of partons will naturally lead to large event-
by-event fluctuations in the minijet multiplicity. The more
the partons are grouped in clusters the wider will be the dis-
tribution of the number of minijets per hadron-hadron colli-
sion. Such fluctuations can be investigated by studying the
charged particle multiplicity distribution. In Fig. 4 we show
E735 multiplicity data (Alexopolouset al., 1998) forpp̄ col-
lisions at Tevatron. The data are compared to simulations
done with a modified version of SIBYLL, using the ampli-
tude (3). It is obvious from this comparison that the multi-
plicity distribution is another very important constraint com-
plementary to both fully inclusive distributions and total and
elastic cross sections. The peak at low multiplicities is due to
peripheral collisions with mainly soft interactions. The high-
multiplicity tail is entirely determined by the hard part of the
eikonal function. The different slopes of the distributions at
low and high multiplicities reflect the different density pro-
files used for soft and hard interactions. In addition Fig. 4
shows that a simple two-component structure of the eikonal
with two independent profile functions is not an adequate ap-
proximation at very high energy. A successful model has to
incorporate a smooth transition between soft and hard inter-
actions in the transverse momentum distribution as well as in
the impact parameter density of the partons.

4 Discussion

If QCD factorization is realized then the very basic relation
(2) between inclusive and exclusive cross sections imposes
severe constraints on the structure of these models.

It has been shown that a transverse momentum cutoff of
the order of 2 GeV, as used in SIBYLL 1.7 and QGSJET, is
not compatible with Tevatron data and the low-x parton den-
sities found at HERA. In particular this means that the “mini-

jet model”, in its original formulation (Gaisser & Halzen,
1985), is ruled out. It seems to be impossible to construct
a model on the basis of an energy-independentp⊥-cutoff and
without substantial low-x parton shadowing corrections, in
which the rise of the total cross section is entirely due to the
increase of the minijet contribution.

A precursor to a reliable extrapolation to ultra-high energy
is the understanding of the Tevatron data using modern par-
ton densities. Models such as SIBYLL 1.7 and QGSJET de-
scribepp̄ collider data rather well although it is now clear
that they do not implement the correct low-x extrapolation
of parton densities. Developing a modern model with up-to-
date parton densities cannot be done without changing the
structure of these models. It will only be possible if fea-
tures of low-x shadowing or saturation are taken into ac-
count. First attempts in this direction are the introduction
of an energy-dependent transverse momentum cutoff (DPM-
JET (Boppet al., 1994), SIBYLL 2.1 (Engelet al., 1999a)).
However, the energy-dependent transverse momentum does
not account for the different possible shadowing or satura-
tion scenarios in nuclei since it is by construction the same
in hadron-hadron, hadron-nucleus and nucleus-nucleus colli-
sions.
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