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Abstract. We propose a new form of function describing lat-
eral distribution of charged particles in extensive air showers
(EAS). We had performed simulations of shower develop-
ment using CORSIKA v.5.62 code for primary proton and
iron nuclei with energies 1011 GeV/nucleon with thinning
factor 10−6. We obtained mean distributions of several EAS
components for distances from the core up to 104 m. We fit-
ted the lateral distribution with the function which has one
more free parameter allowing to achieve consistency with
simulations. The function is exactly normalized in terms of
the hypergeometric formalism.

1 Radial electron distribution from cascade theory

The structure functions f(x) in 3-dimensional cascade theory
(wherex = r/rM , r being the distance to the core in meters),
generally so normalized that

∫∞
0

2πxf(x)dx = 1, are related
to the electron density∆e(r) by ∆e(r) = Nef(x)/r2

M . The
analytical parameterizations of numerical results from the so-
lutions of diffusion equations or from Monte Carlo calcula-
tions are commonly classified following the earliest forms
proposed:

f(x) = 0.45(1/x+ 4) exp(−4x2/3) (1)

= c(s)xs− 2(x+ 1)s− 4.5 (2)

= g(s)xs− a(x+ 1)s− b(1 + d · x)−c (3)

The former approximation (Eq. 1) was derived by Bethe from
Moli ère’s theory for small values of the argumentx and for
s = 1. This form was generalized by Nishimura and Ka-
mata following the numerical values of their solutions of
transport equations via Mellin’s and Hankel’s transforma-
tions in the complex plane and saddle point approximation
to get the final real solutions. The synthesis, so-called NKG
formula (Greisen, 1960), contained in Eq. 2 under a pair of
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power laws representing respectively the asymptotic tenden-
cies (near and far from the shower core), with a simple nor-
malization in terms of Euler Beta function,

c(s) =
Γ(4.5− s)

2πΓ(s)Γ(4.5− 2s)
(4)

became one of the most widely used radial distributions. The
comparison to experimental results suggested however a more
complex situation and some corrections such as the introduc-
tion of a new argumentx = r/krM , k being a factor reduc-
ing Molière radius, or a local age parameters(r), trouble-
some for the normalization of the structure function (Capde-
vielle and Gawin, 1982; Nagano et al., 1984). In order to pro-
vide a better skewness than the transition between two power
laws, we proposed later (Capdevielle and Procureur, 1983)
the more complex relation of Eq. 3; such structure function,
which is also a general form containing Eq. 2 for a particular
set of parameters, has the advantage to be exactly normalized
in terms of Gaussian Hypergeometric function.
At large distances from axis, as emphasized by the Parti-
cle Data Group (Particle Data Group, 1996), the descrip-
tion of the 3D-cascade transport by diffusion equations fails
(small angle approximation in multiple Coulomb scattering,
effect of single scattering, Landau approximation is no more
valid) and the analytical descriptions can be derived only
from Monte Carlo or semi Monte Carlo calculations in order
to restore some useful scaling properties. For instance, the
condition |ln(Eγ/ε)| � |ln(r/rm)|, whereEγ is the pri-
mary photon energy andε the energy threshold for electrons,
is no more fulfilled for a large number of subcascades in giant
EAS at very large distance from shower axis, circumstance
where both Approximation B and Landau’s Approximation
are no more valid.

2 Empirical distributions for giant EAS

The empirical structure functions were inspired by the theo-
retical functions quoted in section 1; as fitted to scintillator
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Fit to all charged particles.
Points for all charged, e+e�, e+e� (E>100 MeV) and muons.

Fig. 1. Fits to all charged particles lateral distribution from simulations (average from 10 EAS). Primary particle energy 1011 GeV. Lines
are normalized to%(600 m). For solid line (this work) see formula 5 and parameters from the table 1.
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Fit to e
+
e
�

.

Points for all charged, e+e�, e+e� (E>100 MeV) and muons.

Fig. 2. Fits to electrons and positons (E> 3 MeV) using formula 5 and parameters from the Table 2.

experiments, they deal generally with densities of charged
particles%(r) (and not with pure electrons). We will refer to

the following functions used for GAS: AGASA #1 (Nagano
et al., 1992), AGASA #2 (Yoshida et al., 1995), Linsley’s
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Table 1. Best parameters to simulatede+e−+ muons (all charged)
lateral distribution fit using JNC formula 5. Labels p10, p20, Fe10
and Fe20 in the first row refer to primary particle (proton or iron)
and to the zenith angle (10◦ or 20◦).

p10 p20 Fe10 Fe20
log10Ne 10.75 10.72 10.70 10.65
rM 21.26 21.26 19.18 19.18
r0 8785. 8785. 9536. 9536.
a 1.91 1.91 1.82 1.82
s 1.03 1.04 1.03 1.04
b 3.32 3.32 3.31 3.31
β 10.0 10.0 10.0 10.0

function (Linsley, 1980) and Yakutsk function for electrons
(Efimov et al., 1988).

3 Hypergeometric formalism

In the case of GAS, we notice on Fig. 1, that in all cases
the lateral muon densities become dominant forr ≥ 1.5 km
(r ≥ 200 m for electrons with E> 100 MeV) in the lateral
distribution of charged particles; the lateral muon distribution
flattens for showers initiated at higher altitude, just when the
lateral electron distribution corresponds also to older profile.
This circumstance, and the opposite situation for showers ini-
tiated deeper in the atmosphere, suggest the extension of the
concept of lateral age parameter to the total lateral charged
particles distribution of GAS, using the skewness of the pro-
files described by our gaussian hypergeometric distribution
(Eq. 3); the parameters have been adjusted with MINUIT
from our Monte Carlo simulation, giving the JNC functions:

%(r) = Ne · C · x−α · (1 + x)(α− η) · (1 + d · x)−β (5)

where x = r
rM

, d = rM
r0

, s = 1.03, α = a− s,
η = b− s+ α,

C = 1
2π · r2

M

· Γ(β + η − α)
Γ(2− α) · Γ(β + η − 2) ·

1
FHG

whereFHG = FHG(β, 2− α;β + η − α; 1− d)
with the conditions2− α > 0 andβ + η − 2 > 0.

4 Adjustment to simulated lateral distributions

In order to appreciate the advantages of the hypergeomet-
ric gaussian approach compared to the classical Eulerian de-
scription, we have fitted for example the average radial dis-
tributions derived from groups of 10 showers simulated with
CORSIKA forE0 = 1020eV, for zenith angles100 and200,

respectively for protons and iron nuclei primaries. All those
showers have been simulated with the Quark Gluon String
Model (Kalmykov et al., 1997); the respective energy thresh-
olds are here 3 MeV for electrons and photons and 300 MeV
for muons.
This operation was performed for all charged particles (elec-
trons + muons) (see Fig.1 and Table 1 for parameter values),
and repeated separately for electrons only (E> 3 MeV) using
the same form of JNC function, but with different parameter
values, listed in the table 2 (see Fig.2), and also for high en-
ergy electrons (E> 100 MeV).

5 Conclusion

It appears that at distances lower than 200 m only the hyper-
geometric approach by reason of its skewness provides a cor-
rect adjustment to the lateral distribution function of charged
particles, when systematically Linsley’s function overesti-
mates the densities and Yakutsk or AGASA functions un-
derestimate the densities. In the consequence, as a majority
of particles are contained in this area, the JNC function is the
only one suitable to recover the size.

Table 2. Best parameters toe+e− (E> 3 MeV) lateral distribution
fit using JNC formula 5.

p10 p20 Fe10 Fe20
log10Ne 10.75 10.72 10.71 10.65
rM 20.65 20.65 28.48 28.48
r0 2698. 2698. 11423 11423
a 1.91 1.91 1.86 1.86
s 1.03 1.05 1.03 1.02
b 3.22 3.22 3.63 3.63
β 5.82 5.82 10.0 10.0
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