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Abstract. For relativistic electrons of fixed energy, depth
variation of the two parametersB andθM characterizing the
Moli ère angular distribution has been represented by a uni-
versal function described in the composite variables. Un-
der the moderate relativistic conditions with ionization, small
dispersions from the universal function arise due to the con-
figuration of Molìere screening model. We have investigated
the magnitude of dispersion on the figure plotted in the com-
posite variables, for various energies of charged particles and
for various substances to traverse through with ionization.
We have found dispersion of the depth-variation curve aris-
ing from the difference of scattering substances from light
to heavy ones is negligibly small on the figure, although the
dispersion due to the difference of rest-mass has been found
not negligible. The results will bring us simple and rapid
derivations of Molìere angular distribution for charged parti-
cles traversing through pure substances.

1 Introduction

Although various types of theory have been proposed to pre-
dict the multiple Coulomb scattering process, Molière theory
(Moli ère, 1947, 1948; Bethe, 1953) still keeps the highest
quality among all. The solution is highly accurate reflect-
ing single, double, and plural scatterings other than multiple
scattering; the distribution is described in series expansion of
rapid convergence (Bielajew, 1994), by the expansion param-
eterB of order of ten; the series expansion is composed of
universal functions of plain expressions with two character-
istic parameters. Moreover the Molière theory is further im-
proved to take account ionization loss (Nakatsuka, 1999a),
by using the Kamata-Nishimura formulation of the theory
(Kamata and Nishimura, 1958; Nishimura, 1967).

Reconstruction of the Molière theory by Kamata-Nishimura
formulation is improving the traditional theory by Molière
and Bethe in contents, applications, and understandings of
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the theory. One of the most superior aspects of the Kamata-
Nishimura formulation is that we can describe the Molière
theory in far simple way by introducing the constantsΩ and
K specific to substance (Kamata and Nishimura, 1958; Nishimura,
1967; Nakatsuka, 2001). It will be valuable for our simula-
tion works (Messel and Crawford, 1970; Nelson et al., 1985;
Heck et al., 1998) where the theory is referred to vast times
in tracing charged particles and for our designings and anal-
yses of experiments where rapid and frequent derivations of
the distribution are required (Yamashita et al., 1996).

The Molière angular distribution is characterized by two
parameters, the expansion parameterB and the unit of Molìere
angleθM. In case of relativistic electrons with fixed ener-
gies,B andθM of Moli ère angular distribution are described
by composite variables in universal functions irrespective of
substances. Under the moderate relativistic conditions with
ionization, there still remains a term in the characteristic pa-
rameters which depends on substances explicitly even after
we introduced the above composite variables, in case we
adopt the Molìere screening model (Molière, 1947, 1948;
Bethe, 1953). If we assume the Born-type screening angle
where the characteristic screening angleχa is proportional
to the Born screening angleχ0 (Scott, 1963) or under the
Moli ère screening angle with the small enough Born param-
eter,zZ/(137β) � 1, it satisfiesβ′ ' β. In this case, dis-
persions of the characteristic parameters from the universal
function described in the composite variable disappear.

Satisfaction ofβ′ ' β, so that the acceptance of the uni-
versal function, is important for rapid and plain derivations
of Moli ère angular distribution of charged particles travers-
ing through pure substances. It will be further important for
derivations of the distribution in mixed or compound sub-
stances, the stochastic mean among the composing substances
becomes far easy to obtain in this situation (Nakatsuka, 2001).
So we have investigated the feasibility to accept the univer-
sal function on the figure of the characteristic parameters ex-
pressed by the composite variables, for various substances
around us from light to heavy substances.
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2 Characteristic ParametersB and θM of Moli ère An-
gular Distribution

The Molière angular distributionf(ϑ)2πϑdϑ is represented
by the series

f(ϑ) = f (0)(ϑ) +B−1f (1)(ϑ) +B−2f (2)(ϑ) + . . . , (1)

where the Molìere anglesϑ is defined by

ϑ = θ/θM. (2)

The functionsf (k) are the universal functions defined in Molière
(1947, 1948), except the factor of2π.

We find the Molìere angular distributions are characterized
by two parameters, the expansion parameterB and the unit
of Moli ère angleθM. So we want to discuss the dispersions
of Moli ère angular distribution due to various conditions, by
these parameters.

3 Moli ère Theory Described in Kamata-Nishimura For-
mulation

According to the Kamata-Nishimura formulation of Molière
theory (Kamata and Nishimura, 1958; Nishimura, 1967), the
diffusion equation of the angular distribution for charged par-
ticles of chargez, rest-massmc2, and velocityβ, traversing
through substance of atomic numberZ with ionization, is
represented by

∂f̃

z2∂t
= − ζ

2

w2
f̃{1− 1

Ω
ln
β′2ζ2

w2
}+ ε

∂f̃

∂E
, (3)

in the Fourier space, where the traversed thicknesst is mea-
sured in the radiation length (Particle Data Group, 2000). We
have defined

w = 2pv/K =
2E
K
{1− (

mc2

E
)2} (4)

and

β′2 =
1.13 + 3.76α2

1.13 + 3.76α2
0

β2, (5)

with

α =
zZ

137β
and α0 =

Z

137
. (6)

K andΩ denote Kamata-Nishimura constants specific to the
substance (Kamata and Nishimura, 1958; Nishimura, 1967;
Nakatsuka, 2001). We assume the ionization loss of a con-
stant rate, dissipatingz2ε in unit radiation length, so that we
have

E = E0 − z2εt. (7)

The solution of Eq. (3) can be expressed as

f̃ =
1

2π
exp{−θ

2
Gζ

2

4
(1− 1

Ω
ln

θ2
Gζ

2

4νz2t/β′2
)}, (8)

whereθG denotes the gaussian root-mean-square angle tak-
ing account rest mass (Nakatsuka, 1999a), derived from

θ2
G =

∫ t

0

4z2

w2
dt

=
K2

2εmc2
{mc

2

pv
− mc2

p0v0
+

1
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(E0+mc2)/(E+mc2)

},

(9)

and the scale factorν is determined from

ln
ν

β′2
= ln

θ2
G

4z2t
− 4z2

θ2
G

∫ t

0

1
w2

ln
β′2

w2
dt. (10)

Applying the translation formula indicated in Nakatsuka (1999b),
the solution (8) is reduced to the Molière form,

f̃ =
1

2π
exp{−θ

2
Mζ

2

4
(1− 1

B
ln
θ2

Mζ
2

4
)}, (11)

with the expansion parameterB and the unit of Molìere angle
θM:

B − lnB = Ω− ln Ω + ln(νz2t/β′2), (12)

θM = θG

√
B/Ω. (13)

Thus we get the Molìere angular distributions indicated in
the previous section.

4 Characteristic Parameters Under The Extreme Rela-
tivistic Condition and Introduction of Composite Vari-
ables

For singly charged particles with extreme relativistic ener-
gies, it satisfies

E � mc2. (14)

Then we have

w ' 2E/K, (15)

β ' 1 (16)

from Eq. (4), so that the two parametersB andθM are deter-
mined by

B − lnB = Ω− ln Ω + ln νz2t, (17)

θM = θG

√
B/Ω, (18)

where

ν = e2(E/E0)(E0+E)/(E0−E). (19)

and

θ2
G =

K2z2t

E0E
. (20)

As it holds

B − lnB = ln(ν
t

Ωe−Ω
), (21)

θ2
M/

K2e−Ω

E2
0

=
B

E/E0

t

Ωe−Ω
, (22)
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Fig. 1. Discrepancies ofB due to the different rest masses.
Incident energiesE0/ε correspond to 10, 102, 103, and 104 in
unit of Ωe−Ω, from left to right.
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Fig. 2. Discrepancies ofθM due to the different rest masses.
Incident energiesE0/ε correspond to 10, 102, 103, and 104 in
unit of Ωe−Ω, from left to right.

for singly charged particles, we find the characteristic param-
eters are described universally irrespective of substances, by
using the composite variablest/(Ωe−Ω) andθM/(Ke−Ω/2/E0).
The unitΩe−Ω for the traversed thickness is almost the same
as the mean free path of the single scattering larger than the
screening angle, measured in the radiation length. It should
be noted that the characteristic parameters represented in the
composite variable,B andθM/(Ke−Ω/2/E0), are functions
of fractional energy, in case of the extreme relativistic condi-
tion.

5 Discrepancy of Molìere Angular Distribution Arising
from The Difference of Rest Mass

We investigate dispersions of the characteristic parameters,
B andθM, due to the difference of rest-massmc2, for singly
charged particles with moderate relativistic energies. We as-
sume the Born parameter be small enough,zZ/137β � 1,
which is realized at e.g. the penetration through light sub-
stances. Then it satisfiesβ′ ' β, and we can determine the
characteristic parameters as

B − lnB = Ω− ln Ω + ln(νt/β2), (23)

θM = θG

√
B/Ω, (24)

with θG from Eq. (9), andν is derived from

ln
ν

β2
= ln

θ2
G

4z2t
− 4z2

θ2
G

∫ t

0

1
w2

ln
β2

w2
dt. (25)

The scale factorν, so thatB andθM, are functions ofE0/mc
2

andE/mc2 in this case.
We compare the results ofB andθM for variousE0/mc

2

of 10, 20, 50, and∞, in Figs. 1 and 2. A slight differences
appear with increase of the fractional thicknesst/(E0/ε) es-
pecially for curves of lower values ofE0/mc

2.

6 Dispersion of Molière Angular Distribution Arising
From The Moli ère Screening Angle

Under the extreme relativistic condition, we could represent
the characteristic parametersB andθM from Eqs. (17), (18)
universally irrespective of substances, by describing the tra-
versed thickness and the unit of Molière angle in composite
variables,t/(Ωe−Ω) andθM/(Ke−Ω/2/E0) respectively.

Under the Molìere screening model with moderate rela-
tivistic energies, the characteristic parametersB andθM de-
rived from Eqs. (12), (13) still require the explicit Z in the
termβ′ even if we use the above composite variables. Dif-
ference ofβ′ from β arises from energy dependence of the
ratio, Molière screening angle to Born screening angle. In
this case, we cannot describe the characteristic parameters
universally by the composite variables, in the definite sense.
But in case it satisfiesβ′ ' β, which is realized in case of
Born parameter to be small enough,B andθM could be de-
termined from Eqs. (23), (24), and be described in universal
expressions by the composite variables.

We examine whether the relationβ′ ' β satisfies or not,
so that the universal relations satisfy or not, on the practical
substances around us. TheB andθM derived fromβ′ by Eqs.
(12), (13) and those fromβ by Eqs. (23), (24) are compared
on substances C, Fe, and Pb in Figs. 3 and 4. We cannot find
any visible differences more than 1 percent between them
within passage of energy loss less than 80 percent.

7 Conclusions and Discussions

We have investigated the dispersions of characteristic param-
etersB andθM due to the differences of rest mass and sub-
stance, on the figures plotted in composite variablest/(Ωe−Ω)
andθM/(Ke−Ω/2/E0).

Dispersions of the characteristic parametersB andθM due
to the difference of rest mass are found not negligible among
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Fig. 3. Discrepancies ofB due to the different Molìere screen-
ing angles from Born ones by substance. Incident energies
E0/ε correspond to 10, 102, 103, and 104 in unit of Ωe−Ω,
from left to right.
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Fig. 4. Discrepancies ofθM due to the different Molìere screen-
ing angles from Born ones by substance. Incident energies
E0/ε correspond to 10, 102, 103, and 104 in unit of Ωe−Ω,
from left to right.

E0/mc
2 of 10, 20, 50, and∞ as shown in Figs. 1 and 2.

Instead, dispersions due to the difference of substance are
found negligibly small among C, Fe, Pb, and a substance of
lowest Z or of negligible Born parameter, for wide ranges
of energy and long passages of traverse. It means we can
replaceβ′ simply byβ in Eq. (12) for derivation of the ex-
pansion parameterB. So we can decide the characteristic
parametersB andθM universally irrespective of substances
around us by using the composite variables, as shown in Figs.
3 and 4.

Satisfaction ofβ′ ' β will make the practical derivation of
Moli ère angular distribution far simple for pure substances.
This fact will also be essential in practical derivations of the
distribution for mixed or compound substances (Nakatsuka
and Nishimura, 2001).
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