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Abstract. Based on the solution of three dimensional
cosmic-ray diffusion for the primary component derived
by the author, taking a rather realistic structure of our
Galaxy into account, we show an analytical solution of
the cosmic-ray diffusion for secondary components, typ-
ically for Li-Be-B mainly coming from C and O, and for
sub-Fe coming from Fe. We present also the solution for
unstable nuclei, typically 10Be.

1 Introduction

In two papers (Shibata I, II, 2001; hereafter called Paper
I and Paper II) presented in this volume, we showed the
solution of 3D cosmic-ray (CR) diffusion, taking a rather
realistic structure of our Galaxy into account, where we
assumed three critical parameters, the diffusion coeffi-
cient D, the gas density n and the CR source density
s, depend on the position (r, z) in cylindrical cordinate,
each having exponential distribution function, while in
Paper II, each one has two component scale-heights, one
corresponding to the disk and the other to the halo.

In the present paper, we give the solution for sec-
ondary components with the use of the one component
model, both stable and the unstable nuclei, coming from
the fragmentation of the primary components. It is
needless to say that these data bring us invaluable infor-
mations in understanding the CR origin and the mech-
anism of the acceleration and the propagation in our
Galaxy.

Though many elaborate works have been reported in
the past (Berezinskii et al. 1990), there still remains
unclear problems, far from the unified picture for the
propagation of the all kinds of CR components, both
1-ry and 2-ry. For instance, according to several recent
works (Silberberg et al. 1993; Seo et al. 1994; Heinbach
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et al. 1995; Mitsui 1996; Nishimura 1997), the reacceler-
ation process is not always effective, and a simple leaky
box model is rather in good agreement with the data,
while it is quite likely that the scattering of CR due
to the random magnetic field must happen during the
propagation of CR in the Galaxy.

In order to study these difficulties, we propose a new
solution for the CR diffusion problem, taking various
effects, spatial dependency of the diffusion coeficient,
the gas density and so on.

2 Solution for stable nucleus

In Paper I, we showed the explicit form of the solution
of CR diffusion, Φ(±)

P (r, u; r0, u0), where u = r/r̄ + z/z̄,
u0 = r0/r̄ + z0/z̄, and also the CR intensity of the pri-
mary component NP (r, u), which is obtained by the in-
tegration with the weight of CR source density s(r0, z0),

NP (r, u) =
∫ R

0

2πr0dr0

∫ +∞

−∞
dz0s(r0, z0)Φ(±)

P (r, u; r0, u0).

(1)
Notations used in the present paper are the same as
those in Paper I, though sometimes attaching here the
subscripts, “P” and “S”, in order to discreminate the
primary and the secondary components.

Secondary components originated from the above pri-
mary component NP (r, u) are then straightforwardly
given by

NS(r, u) =
∫ R

0

2πr0dr0

∫ +∞

−∞
dz0

× [NP (r0, u0)n(r0, z0)vσPS]Φ(±)
S (r, u; r0, u0). (2)

Here, σPS denotes the fragmentaion cross section, P →
S, and we omit the contribution from the second step
product (second generation fragments), P → S′ → S.
Contribution of the second and higher generation frag-
ments will be discussed elsewhere.
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Explit forms of NP and Φ(±)
S (see Paper I) are

NP (r0, u0) =
s0z̄

2

D0
Uν0

∞∑
k=1

Mk(r0)Nk(U0, Ur0), (3)

Φ(±)
S (r, u; r0, u0) =

(
U

U0

)ν ∞∑
m=1

qm(r0, z0)J0(ζmr/R)×

[
(Iνm(Λ∗r)Iνm(Λ∗),Lm(Λ∗r ,Λ

∗
0))±

(Iνm(Λ∗r), Iνm(Λ∗r))+
−Lm(Λ∗,Λ∗0)θ(u0−u)

]
(4)

where ζm (m = 1, 2, . . .) are the roots of J0(ζm) = 0,

ν2
m = ν2 + λ2

1,m, (5)

with ν =
z̄

2zD
, λ1,m =

ζmz̄

R
, (6)

and
Λ∗ = λ∗0U, Λ∗0 = λ∗0U0, Λ∗r = λ∗0Ur, (7)

with λ∗0 =
√
n0vσS
D0

z̄. (8)

σS is the cross section for the secondary concerned, and
all the variables, U , U0, Ur, qm(r0, z0), ..... are the same
as those defined in Paper I.

Performing the integrations with respect to r0 and z0,
we obtain a similar form as eq. (3)

NS(r, u)=f
PS
λ2

0

s0z̄
2

D0
Uν
∞∑
k=1

∞∑
m=1

Mk,m(r)Nk,m(U,Ur),

(9)
where explicit forms of Mk,m and Nk,m are summarized
in Appendix A, and

λ0 =
√
n0vσP
D0

z̄ and fPS =
σPS
σP
. (10)

fPS corresponds to the production rate of the fragment
S in the collision of the primary P with ISM.

Finally, we obtain the relative intensity of the sec-
ondary to the primary,

NS
NP

= fPSλ
2
0

∑
k

∑
mMk,m(r)Nk,m(U,Ur)∑
k Mk(r)Nk(U,Ur)

. (11)

3 Solution for unstable nucleus

In this section, we present the solution in the case of
unstable nucleus, though we don’t touch the effect of the
energy loss as well as that of the reacceleration during
the propagation in the Galaxy, because of the limited
space.

The procedure of the derivation of the solution is the
same as that presented in the last section, but Φ(±)

S must
be changed slightly. If we don’t take the energy change

during the propagation into account, it is straightfor-
ward to write down the diffusion equation, i.e., Eq. (10)
in Paper I is replaced by[

d2

du2
+ 2ν

d

du
− (λ∗0

2e−2u + λ2
τe−2νu + λ2

1,m)
]
ϕm

= −qm(r0, z0)δ(u− u0), (12)

with λτ =
z̄√
τD0

, (13)

where τ = γτ0 (τ0: rest lifetime, γ: Lorentz factor).
Since it is somewhat complicated to show general an-

alytical solution in this case, we present three typical
cases in choice of two scale heights, z

D
and zn, which

are both critical parameters in CR propagation,

(a) z
D
� zn ⇒ ν = 0, z̄ = 2zn � z

D
,

(b) z
D
' zn ⇒ ν = 1

2 , z̄ = zn = z
D
,

(c) z
D
� zn ⇒ ν = 1, z̄ = 2z

D
� zn.

3.1 Solution in the case of ν = 0 (z̄ = 2zn)

In this case, we obtain completely the same solution as
Eq. (9), if we change νm defined by Eq. (5) with

ν2
m = λ2

τ + λ2
1,m. (14)

3.2 Solution in the case of ν = 1 (z̄ = 2zD)

In this case also, we obtain the same solution as Eq. (9),
if we change λ∗0 defined by Eq. (8) with

λ∗0 = λτ
√
n0vσSτ + 1. (15)

3.3 Solution in the case of ν = 1/2 (z̄ = zD = zn)

In this case, the situation is somewhat different from the
above two cases, and with use of the variable U(= e−u)
in place of u, Eq. (12) is now reduced to[

d2

dU2
−
(
λ∗0

2+
λ2
τ

U
+
λ2

1,m

U2

)]
ϕm = −qmδ(U−U0). (16)

Fundamental solution of this equation is given by use
of the Confluent Hypergeometrical function F (a, b; x),
and putting simply

Fµ,ν(x) = F (µ+ ν, 1 + 2ν; 2x), (17)

we have, (see Eq. (14) in Paper I)

ϕ(±)
m (u; r0, u0) = a(±)Am(Λ∗) + b(±)Bm(Λ∗), (18)

where Λ∗ is defined by Eqs. (7) and (8), and

Am(Λ∗) = 2
√
νmΛ∗ Fνm(Λ∗), (19a)

Bm(Λ∗) = 2
√
νmΛ∗ Gνm(Λ∗), (19b)
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and

Fν(x) =
1√
2ν

e−x(2x)+νFµ,+ν(x), (20a)

Gν(x) =
1√
2ν

e−x(2x)−νFµ,−ν(x), (20b)

µ = µτ + 1/2 with µτ = λ2
τ/2λ

∗
0. (21)

One may remark that Fνm(Λ∗) and Gνm(Λ∗) intro-
duced above correspond to Iνm(Λ) and Kνm(Λ) respec-
tively, appeared in the solution in the case of the stable
nucleus. In fact, they resemble greatly each other as
shown in Appendix B.

Now, taking acccount of the boundary conditions, we
obtain

Φ(±)
S (r, u; r0, u0) =

(
U

U0

)1
2 ∞∑
m=1

qm(r0, z0)J0(ζmr/R)×

[
(Fνm(Λ∗r)Fνm(Λ∗),Lm(Λ∗r ,Λ

∗
0))±

(Fνm(Λ∗r), Fνm(Λ∗r))+
−Lm(Λ∗,Λ∗0)θ(u0−u)

]
(22)

Lm(X,Y ) = Fνm(X)Gνm(Y )−Fνm(Y )Gνm(X), (23a)

L
†
m(X,Y ) = F †νm(X)Gνm(Y )−Fνm(Y )G†νm(X). (23b)

Eq. (22) is completely the same form as Eq. (4) after
replacing Iνm , Kνm and ν by Fνm , Gνm and 1/2 respec-
tively. In Appendix B, we present the explicit forms of
the brackets appeared in Eq. (22) and compare them
with those found in the case of the stable nucleus.

Now integrating over r0 and z0 with the weight of the
source, [nvσPS]NP , (see Eq. (2)), we obtain

N
(τ)
S (r, u)=f (τ)

PS
λ2

0

s0z̄
2

D0
U

1
2

∞∑
k=1

∞∑
m=1

Mk,m(r)N(τ)
k,m(U,Ur),

(24)

with f (τ)
PS = σ(τ)

PS /σP , (25)

that is, f (τ)
PS is the production rate of the unstable nu-

cleus. Explicit form of N(τ)
k,m is summarized in Appendix

C, while Mk,m(r) is the same as that used in the case
of stable nucleus.

The relative intensity of the unstable nucleus to the
stable nucleus in the case of ν = 1/2 is given by

N
(τ)
S

NS
= fτ

∑
k

∑
mMk,m(r)N(τ)

k,m(U,Ur)∑
k

∑
mMk,m(r)Nk,m(U,Ur)

, (26)

with fτ = σ(τ)
PS /σ

(τ=∞)
PS , (27)

where fτ is the relative production rate of the unstable
nucleus to the stable one.

4 Summary

In the present and the other two papers (Shibata I, II
2001) appeared in this volume, we obtained analytical
solutions for 3D cosmic-ray diffusion in our Galaxy, tak-
ing account of rather realistic effects such as the spatial
dependence for three critical parameters, diffusion coef-
ficient D, the gas density n and the source density s.

We found the solution for the diffusion of unstable
nucleus is obtained by replacing the variables and func-
tions used in the case of the stable nucleus with following
ones for three typical ν’s;

(a) ν = 0 (z̄ = 2zn � z
D

) : ν2
m ⇒ λ2

τ + λ2
1,m,

(b) ν = 1
2 (z̄ = zn = z

D
) : Iνm ,Kνm ⇒ Fνm , Gνm ,

(c) ν = 1 (z̄ = 2z
D
� zn) : λ∗0 ⇒ λτ

√
n0vσSτ + 1.

Unfortunately, we are not in time for the numerical
results, and for the comparison with recent experimen-
tal data on various kinds of components (see references
appeared in Paper I), and couldn’t touch the low energy
effect, particularly ionization loss, and the reacceleration
process. These low energy effects are not so simple as
discussed here, since the diffusion equation is in general
not separable in space and energy.

About this problem, Ptsukin et al. pointed out re-
cently a possibility to use the weighted slab approxima-
tion (Ptsukin et al. 1996) under some condition. Based
on their consideration, we will discuss these problems
elsewhere.

Appendix A Explcit forms of Mk,m and Nk,m

Mk,m(r) =
Ξ (ξk, R/r̂)
J2

1 (ξk)
J0(ζmr/R)
J2

1 (ζm)
, (A1)

Nk,m(X,Y ) =
∫ 1

0

Ψm(y,X, Y )ydy
∫ 1

0

xω−1Ψ̄k,m(x, y)dx.
(A2)

Here ω ' 2− ν (see Paper I), and Ψm is the exchange-
function defined by Eqs. (26) and (27) in Paper I after
replacing k, λ0 by m, λ∗0, respectively,

Ψm(X,Y, Z) =

{
ψm(X,Y, Z), for X ≤ Y
ψm(Y,X,Z), for X ≥ Y

}
(A3)

ψm(X,Y, Z) = L
†
m(λ∗0Z, λ

∗
0Y )

Iνm(λ∗0X)

I†νm(λ∗0Z)
, (A4)

where L
†
m(X,Y ) is obtained by replacing Fνm , Gνm in

Eq. (23b) with Iνm , Kνm respectively. Ψ̄k,m(X,Y ) is
also the exchange-function defined by,

Ψ̄k,m(X,Y ) =

{
ψ̄k,m(X,Y ), for X ≤ Y

ψ̄k,m(Y,X), for X ≥ Y

}
(A5)
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where

ψ̄k,m(X,Y ) =
∫ 1

0

ψk(X,Y, Ut)J0(ξkt)J0(ζmt)tdt,
(A6)

with Ut = e−[R/r̄]t, (A7)

where ψk(X,Y, Z) is defined by Eq. (27) in Paper I, i.e.,
the same form as the above Eq. (A4) after replacing m,
λ∗0 by k, λ0, respectively. Then Eq. (A6) is rewritten,

ψ̄k,m(X,Y ) = Iνk(λ0X)[ck,mKνk(λ0Y )−dk,mIνk(λ0Y )],
(A6′)

where

ck,m =
∫ 1

0

J0(ξkt)J0(ζmt)tdt, (A8a)

dk,m =
∫ 1

0

J0(ξkt)J0(ζmt)
K†νk(λ0Ut)

I†νk(λ0Ut)
tdt. (A8b)

Appendix B Summary of Fν(x) and Gν(x)

Here we summarize two functions, Fν(x) and Gν(x),
expressed with use of the Confluent Hypergeometrical
function, F (a, b; x).

Let us introduce a function,

F †µ,ν(x) = (µ+ ν)Fµ+1,ν(x)− (µτ + x)Fµ,ν(x), (B1)

which corresponds to I†ν(x) and/or K†ν(x) appeared of-
ten in the solution for the stable nucleus, and put

F †ν (x) =
1√
2ν

e−x(2x)+νF †µ,+ν(x), (B2a)

G†ν(x) =
1√
2ν

e−x(2x)−νF †µ,−ν(x). (B2b)

With use of these functions, we find

d

du
Am(Λ∗) = −2

√
νmΛ∗ F †νm(Λ∗), (B3a)

d

du
Bm(Λ∗) = −2

√
νmΛ∗ G†νm(Λ∗). (B3b)

One should note that the Wronskian, W (Fν , Gν), is
given by

W (Fν , Gν) = Fν(x)G′ν(x)−F ′ν(x)Gν(x) = − 1
x
, (B4a)

corresponding to

W (Iν ,Kν) = Iν(x)K ′ν(x)− I ′ν(x)Kν(x) = − 1
x
. (B4b)

So, in the case of X = Y = Λr in Eq. (23b), we find
immediately

L
†
m(Λr ,Λr ) = 1, (B5)

i.e., the above relation holds both for the Modified Bessel

function and the Confluent Hypergeometrical function.
These relations are quite useful for the practical calcu-
lation at the galactic plane, z = 0.

Appendix C Explicit form of N
(τ)
k,m

As discussed in Appendix B, the difference of the solu-
tion between the stable and the unstable nuclei is found
in ψm only, the explicit form of which is presented in
Eq. (A4) in the case of the stable nucleus. One should
remark it is also the same form as in the case of the
primary component (see Eq. (27) in Paper I) after re-
placing λ0 by λ∗0, or equivalently replacing σP by σS.

Then the form of N
(τ)
k,m(X,Y ) is completely the same

as Eq. (A2) after redefining the exchange-function

ψm(X,Y, Z) = L
†
m(λ∗0Z, λ

∗
0Y )

Fνm(λ∗0X)

F †νm(λ∗0Z)
, (C1)

where L
†
m(X,Y ) is defined by Eq. (23b).

In the case of the galactic plane (Y = Z = Ur), we
have a simple result with use of Eq. (B5),

ψm(X,Ur, Ur) =
Fνm(λ∗0X)

F †νm(λ∗0Ur)
, (C2)

while for the stable nucleus or the primary component,

ψm(X,Ur, Ur) =
Iνm(λ∗0X)

I†νm(λ∗0Ur)
. (C3)
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