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Abstract.
We derive an analytical solution of three dimensional

cosmic-ray diffusion in the Galaxy with two-component
scale heights, one corresponding to the disk and the
other to the halo, assuming that three critical param-
eters, D: diffusion coefficient, n: gas density, and s:
cosmic-ray source density, are of the exponential type
in both r (radial distance from the disk center) and z
(vertical distance from the galactic plane), i.e., D, n and
s have two scale heights, one set with [zgD, zgn, zgs] for
z ≤ zc and the other with [zhD, zhn, zhs] for z ≥ zc. We
expect the former three heights are of the order of mag-
nitude with a few hundreds pc, while the latter three are
of the order of magnitude more than a few kpc, much
larger than the former ones.

1 Introduction

In another paper presented in this volume (Shibata 2001,
hereafter named paper I), we gave an analytical solu-
tion for the cosmic-ray (CR) diffusion, assuming that
the distribution shapes of three critical parameters, D:
diffusion coefficient, n: gas density, and s: CR source
density, are of the exponential type in both r (radial
distance from the disk center) and z (vertical distance
from the galactic plane),

D(r, z) = D0 exp[r/rD + |z|/zD], (1a)

n(r, z) = n0 exp[−(r/rn + |z|/zn)], (1b)

s(r, z) = s0 exp[−(r/rs + |z|/zs)]. (1c)

Practically, however, it is quite likely that the above
three parameters have two components, one correspond-
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ing to the disk and another to the halo. So, introducing
a critical distance zc from the galactic plane, we assume

[zD, zn, zs] =

 [zgD, zgn, zgs], for |z| ≤ zc (2a)

[zhD, zhn, zhs], for |z| ≥ zc (2b)

[D0, n0, s0] =

 [Dg0, ng0, sg0], for |z| ≤ zc (3a)

[Dh0, nh0, sh0], for |z| ≥ zc (3b)

In Eq. (2a), three parameters, [zgD, zgn, zgs], corre-
spond to the scale heights of D,n and s in the disk, while
[zhD, zhn, zhs] in Eq. (2b) to those in the halo. Naturally,
we expect

zhD � zgD, zhn � zgn, zhs � zgs,

and probably zhD, zhn and zhs might be one order of
magnitude larger than zgD, zgn and zgs.

Taking the continuation condition at z = zc into ac-
count, we have following three constraints for these pa-
rameters,

Dg0 exp[zc/zgD] = Dh0 exp[zc/zhD], (4a)

ng0 exp[−zc/zgn] = nh0 exp[−zc/zhn], (4b)

sg0 exp[−zc/zgs] = sh0 exp[−zc/zhs]. (4c)

In the present paper, we derive an analytical solution
of 3D CR diffusion in the case of two components in scale
heights for the diffusion coefficient, gas density and the
CR source density.

Throughout this paper, we distinguish all variables
related to the disk (z ≤ zc) from those to the halo (z ≥
zc) by attaching the subscripts, “g” and “h”, to them,
respectively, and we use the same notations as those
used in paper I.
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2 Solution of the diffusion equation

2.1 Fundamental solution

The diffusion equation and the boundary condition are
presented in paper I, and the difference here from it is
only the continuation condition at z = zc. So, the fun-
damental solution of the diffusion equation is completely
the same as in the case of the one component model (see
Eq. (14) in paper I),

ϕk(u; r0, u0) = aAk(Λ) + bBk(Λ), (5)

Λ(u) = λ0U(u) = λ0e−u, (6a)

with u = r/r̄ + |z|/z̄, (6b)

where we introduced following functions and variable,

Ak(Λ) = ΛνIνk(Λ), Bk(Λ) = ΛνKνk(Λ), (7)

λ0 =
√
n0vσ

D0
z̄. (8)

Before going to the details of the procedure in the
derivation of the solution, we summarize variables,

Λi ≡ λi0U(ui) with ui = r/r̄ + |z|/z̄i, (9a)

Λic ≡ λi0U(uic) with uic = r/r̄ + |zc|/z̄i, (9b)

Λi0 ≡ λi0U(ui0) with ui0 = r0/r̄ + |z0|/z̄i, (9c)

where i denotes “g” (disk) or “h” (halo), and

λi0 =
√
ni0vσ

Di0
z̄i, (8′)

with
1
z̄i

=
1
2

(
1
zin

+
1
ziD

)
. (10)

In the following discussion, we assume z0 ≥ 0, but it
doesn’t lose the generality, i.e., one may exchange z for
−z in the case of z0 ≤ 0.

Let us write down two solutions including the source
term separately for two regions, |z| ≤ zc and |z| ≥ zc.

|z| ≤ zc (Λgc ≤ Λg) :

ϕ
(±)
k,g (ug; r0, ug0) = a(±)

g Ak,g(Λg)

+ b(±)
g Bk,g(Λg)−Qk,g(Λg)θ(±). (11a)

|z| ≥ zc (Λh ≤ Λhc) :

ϕ
(±)
k,h (uh; r0, uh0) = a

(±)
h Ak,h(Λh)

+ b
(±)
h Bk,h(Λh)−Qk,h(Λh)θ(±). (11b)

Here, Qk,i(Λi) relates to the source term, explicit form
of which is presented in Appendix A.

2.2 Boundary condition

We have to find a
(±)
g , a(±)

h , b(±)
g and b

(±)
h in Eqs. (11a)

and (11b), taking into account two continuation condi-
tions at z = ±0 (u = r/r̄) and z = ±zc (u = uc ≡ r/r̄+
|zc|/z̄) as well as two boundary conditions at z = ±∞
(u =∞). Let us summarize the continuation conditions
and the boundary conditions explicitly.

z = ±0 (u = r/r̄, Λg = Λgr = λg0Ur) :

ϕ
(+)
k,g (r/r̄; r0, ug0) = ϕ

(−)
k,g (r/r̄; r0, ug0), (12a)

ϕ
′(+)
k,g (r/r̄; r0, ug0) = ϕ

′(−)
k,g (r/r̄; r0, ug0). (12b)

z = ±zc (u = uc, Λg = Λgc, Λh = Λhc) :

ϕ
(±)
k,g (ugc; r0, ug0) = ϕ

(±)
k,h (uhc; r0, uh0), (13a)

ϕ
′(±)
k,g (ugc; r0, ug0) = ϕ

′(±)
k,h (uhc; r0, uh0). (13b)

z = ±∞ (u =∞, Λh = 0) :

a
(±)
h Ak,h(0) + b

(±)
h Bk,h(0) = 0. (14)

2.3 Explicit form of the solution

It is very useful to introduce two brackets,

(A, B)± = A×B
† ± A

† ×B

∣∣∣∣
z=0

, (15a)

[A, B] = A×B
† − A

† ×B

∣∣∣∣
z=zc

. (15b)

The meaning of † and the round bracket, (· · ·)±,
are already appeared in Paper I, which come from the
smooth continuation condition of ϕ(+)

k,g and ϕ
(−)
k,g at z =

0. Therefore, this bracket is applied only for the term
related to the variable Λgr(= λg0Ug(z = 0)), and others
related to such as Λg, Λgc, Λh, Λhc, . . . are freely moved
in and out the bracket.

On the other hand, the square bracket, [· · ·], cor-
responds to the smooth continuation condition of ϕ(±)

k,g

and ϕ
(±)
k,h at z = ±zc. Therefore, this bracket is applied

only for the term related to the variable, Λgc or Λhc,
and others related to such as Λg, Λgr, Λh, . . . are freely
moved in and out the bracket. In the present works,
these brackets play essential role to obtain the solution
without complexity. In Appendix B, we demonstrate
several examples of these brackets.

These brackets are indeed useful for the mathematical
simplification, but the practical procedure of the deriva-
tion of the final solution is still cumbersome, and here
we give only the result, after integrating over (r0, z0),
taking account of the source term, s(r0, z0), the detail
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of which will be reported elsewhere. We summarize the
solution in the similar form as that presented in the one
component model (see Paper I).

N(r, u) =
si0z̄i

2

Dii(r, z)

∞∑
k=1

Mk,i(r)Nk,i(Ui, Ujc)

+
sj0z̄j

2

Dij(r, z)

∞∑
k=1

Mk,j(r)Nk,j(Ui, Ujc), (16)

here
Dij(r, z) =

√
Di(0, z)Dj(κjr, 0), (17)

Di(r, z) = Di0 exp[r/rD + |z|/ziD], (18)

κi =
(

1 +
rD
rn

)/(
1 +

ziD
zin

)
' 1, (19)

[i, j] ≡

 [“g”, “h”], for |z| ≤ zc

[“h”, “g”], for |z| ≥ zc

 (20)

Here, we should remember that bounded to Eqs. (4a)
∼ (4c) is each pair for the three critical parameters,
[Dg0, Dh0], [ng0, nh0], and [sg0, sh0], respectively.

Corresponding to Eqs. (29), (30) and (31) in Paper I,
we have

Mk,i(r) 'Mk(r) ' 2J0(ξkr/R)
ξkJ1(ξk)

, (21)

Nk,i(X,Y ) =
∫ 1

0

tωi−1Ψk,i(t,X, Y )Θi(t)dt, (22)

with ωi = 2ω⊥i − νi ' 2− νi, (23)

where

Θi(t) =

 θ(t− Ugc), for i ≡ “g”

θ(Uhc − t), for i ≡ “h”

 (24)

Ψk,i in Eq. (22) is summarized in Appendix C.
One may note Eq. (16) is quite similar to Eq. (28′) in

Paper I. In fact, we find that they coincide completely
with each other in both limits of zc → ∞ and zc → 0
(see Appendix D).

2.4 Solution at the galactic plane

Let us present explicitly the solution in the case of the
galactic plane (z = 0 or equivalently u = ur = r/r̄). In
the case of z = 0, we have

Ψk,g(t, Ur, Uhc) =
[Lk,g(Λgc,Λgt), Iνk,h(Λhc)]

[Iνk,h(Λhc),L
†
k,g(Λgr,Λgc)]

, (25a)

Ψk,h(t, Ur, Uhc) =
Iνk,h(Λht)

[Iνk,h(Λhc),L
†
k,g(Λgr,Λgc)]

, (25b)

with Λgt = λg0t, Λht = λh0t.

Taking care of the constraint condition Eq. (4), finally
we obtain a quite similar form of the solution as that in
the case of one component model (Eq. (34) in Paper I),

N(r, r/r̄) ' sg0z̄g
2

Dg(r/2, 0)

∞∑
k=1

2J0(ξkr/R)
ξkJ1(ξk)

Hk(λg0, λh0)

H†k(Λgr)
,

(26)
where the explicit forms of Hk(a, b) and H†k(Λ) are pre-
sented in Appendix D. For the limit of zc → ∞ or
zc → 0, Eq. (26) is completely coincident with that of
Eq. (34) of paper I, as shown in Appendix D.

3 Discussion

We obtained the solution of 3D cosmic-ray diffusion with
two component scale heights, one corresponding to the
disk and the another to the halo. The solution is of quite
similar form as that in the case of one component scale
height. We confirmed the present solution is completely
coincident with that of the one component model for
zc →∞ and/or zc → 0.

We found that two kinds of brackets, (· · ·)± and [· · ·],
are quite useful in order to obtain the solution of diffu-
sion equation without the complexity in the procedure
of the evaluation.

In the present report, we focused to the procedure
of the derivation of the solution, and numerical results
will be reported elsewhere. For the practical application
of the present result, we have to obtain further various
observables, such as the path length distribution, sec-
ondary/primary, isotope, diffused γ, and so on, but we
don’t touch them due to the limited space, some of which
might be reported at the oral session in the conference.

Appendix A Explicit form of Qk,i(Λi)

This function is related to the source term qk,i(r0, z0)
(see Eq. (13) in Paper I).

Qk,i(Λi) = qk,i(r0, z0)Λ−2νi
i0 Lk,i(Λi,Λi0)Θ(Λi,Λi0,Λic),

(A1)

with νi =
z̄i

2ziD
= 1
/(

1 +
ziD
zin

)
, (A2)

qk,i(r0, z0) =
z̄i

Di(r0, z0)
J0(ξkr0/R)
πR2J2

1 (ξk)
. (A3)

Lk,i(X,Y ) = Ak,i(X)Bk,i(Y )−Ak,i(Y )Bk,i(X), (A4)

Θ(Λi,Λi0,Λic) = θ(Λg − Λg0)θ(Λg0 − Λgc), for i ≡ “g”

θ(Λh − Λh0)θ(Λhc − Λh), for i ≡ “h”

 (A5)
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Appendix B Examples of the sqaure bracket

Here we give two examples appeared in the numerator
and the denominator of the righhand side of Eq. (25a).

[Lk,g(Λgc,Λgt), Iνk,h(Λhc)] =

Lk,g(Λgc,Λgt)I†νk,h(Λhc)−L
†
k,g(Λgc,Λgt)Iνk,h(Λhc)

= H
(2)
k,1Iνk,g (Λgt)−H(1)

k,1Kνk,g (Λgt), (B1a)

[Iνk,h(Λhc), L
†
k,g(Λgr,Λgc)] =

Iνk,h(Λhc)L
††
k,g(Λgr,Λgc)− I†νk,h(Λhc)L

†
k,g(Λgr,Λgc)

= H
(2)
k,1I

†
νk,g

(Λgr)−H(1)
k,1K

†
νk,g

(Λgr). (B1b)

L
††
k,g(X,Y ) = I†νk,g (X)K†νk,g (Y )− I†νk,g (Y )K†νk,g (X).

(B2)

I†ν(Λ), K†ν(Λ), and Lk,g(X,Y ), L†k,g(X,Y ) are presented
in Eqs. (A1a), (A1b), and Eqs. (A4a), (A4b) in Paper I,
and H(1)

k,1, H
(2)
k,1 are defined in Appendix D in this paper.

It should be remarked that

Lk,g(Λ,Λ) = 0, L
†
k,g(Λ,Λ) = 1, L

††
k,g(Λ,Λ) = 0.

(B3)

Appendix C Definition of the exchange-function

ψk,i(X,Y, Z) =

[Lk,i(Λic, λi0X), Iνk,h(λh0Y )L†k,g(Λgr, λg0Z)]

[Iνk,h(Λhc), L
†
k,g(Λgr,Λgc)]

, (C1)

for i 6= j ;

Ψk,i(X,Y, Ujc) =

 ψk,g(X,Uhc, Y ), for X ≤ Y

ψk,g(Y, Uhc, X), for X ≥ Y

 : i, j ≡ “g”, “h”

 ψk,h(Y,X,Ugc), for X ≤ Y

ψk,h(X,Y, Ugc), for X ≥ Y

 : i, j ≡ “h”, “g”


(C2)

for i = j ;

Ψk,i(X,Y, Uic) =

 ψk,g(Ugc, Y,X) : i ≡ “g”

ψk,h(Uhc, X, Y ) : i ≡ “h”

 (C3)

Appendix D Explicit forms of H†k and Hk

We introduce following variables and functions,

H
(1)
k,1 = [Iνk,h(Λhc), Iνk,g (Λgc)], (D1a)

H
(2)
k,1 = [Iνk,h(Λhc), Kνk,g (Λgc)], (D1b)

H
(1)
k,2 = [Kνk,h(Λhc), Iνk,g (Λgc)], (D1c)

H
(2)
k,2 = [Kνk,h(Λhc), Kνk,g (Λgc)]. (D1d)

H†k(Λ) = H
(2)
k,1I

†
νk,g

(Λ)−H(1)
k,1K

†
νk,g

(Λ), (D2)

Hk(a, b) = H
(2)
k,1Iνk,g (a)−H(1)

k,1Kνk,g (a) +H0Iνk,h(b),
(D3)

where
Iνk,g (a) =

∫ 1

Ugc

tωg−1Iνk,g (at)dt, (D4a)

Kνk,g (a) =
∫ 1

Ugc

tωg−1Kνk,g (at)dt, (D4b)

Iνk,h(b) =
∫ Uhc

0

tωh−1Iνk,h(bt)dt, (D4c)

and with use of the constraint conditions Eqs. (4a) and
(4c),

H0 =
z̄2
h

z̄2
g

sh0

sg0

√
Dg0

Dh0
=
z̄2
h

z̄2
g

e−zc/ẑ, (D5)

with
1
ẑ

=
(

1
zgs

+
1

2zgD

)
−
(

1
zhs

+
1

2zhD

)
. (D6)

Let us check the consistency of the present solution
with that in the case of one component model for zc →
∞ and/or zc → 0. For instance, in the case of zc →∞,
we find immediately

Ugc, Uhc → 0, Λgc,Λhc → 0,

leading to
H

(1)
k,1 → 0, H

(2)
k,1 →∞,

i.e.;
Hk(λg0, λh0)→ H

(2)
k,1Iνk,g (λg0),

H†k(Λgr)→ H
(2)
k,1I

†
νk,g

(Λgr).

Then we obtain

Hk(λg0, λh0)

H†k(Λgr)
⇒ Iνk(λg0)

I†νk(Λgr)
,

which coincides with the solution of one component model.
In the case of zc → 0, we find also it gives the same

solution as that of the one component model.
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