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Abstract. We show an analytical solution of three di-
mensional cosmic-ray diffusion, taking into account a
rather realistic structure of our Galaxy, where we as-
sume, 1) D(r, z) = D0 exp[r/rD + |z|/zD], 2) n(r, z) =
n0 exp[−(r/rn+|z|/zn)], and 3) s(r, z) = s0 exp[−(r/rs+
|z|/zs)], i.e., three critical parameters, the diffusion co-
efficient D, gas density n and the cosmic-ray source den-
sity s depending on both radial distance r from the disk
center and the perpendicular distance z from the galac-
tic plane.

We also present the path-length distribution and its
average value, based on the present analytical solution.

1 Introduction

Recently new data on cosmic-ray (CR) spectrum and
composition (Apanasenko et al. 2001), 2-ry/1-ry ratio
(Hareyama et al. 1999; Apanasenko et al. 2001), p̄ (Orito
et al. 2000), e± (Nishimura et al. 1996; Müller et al.
1995), the radioactive isotope (Yanasak et al. 2000) and
so on, have become available, which are essentially im-
portant in understanding the origin and the propagation
of CR. These components are closely related with each
other, and the simultaneous study for all of them brings
us a critical information of the structure of our Galaxy.

It is, however, not so straightforward to build an uni-
fied picture for the propagation of those in connection
with the structure of Galaxy. Main reason originates
in the uncertainty of the cross section in the fragmen-
tation process, particularly for isotope products, apart
from the limitation in statistics nowadays available.

Another reason is due to the mathematical complexity
in the diffusion problem of CR taking account of various
effects, such as the (r, z)-dependence in diffusion coeffi-
cient, the gas density and so on, though past ellaborate
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works, particularly by russian groups under Ginzburg
(Berezinskii et al. 1990), have made clear already the
essence of the CR propagation.

In the present paper, we show an analytical solution
for primary components, taking account of the effects
mentioned above, while the secondary components, in-
cluding unstable nucleus, are presented in another paper
(Shibata III 2001). In three papers presented in this
conference, we don’t touch the energy dependence in
diffusion coefficient and the energy change coming from
either ionization loss or the reacceleration, effective in
the low energy region, due to limited space, which will
be reported separately elsewhere.

2 Diffusion equation

Assuming a position of the cosmic-ray source is given
by (r0, z0) in the cylindrical coordinate, the diffusion
equation has a form[

1
r

∂

∂r
rD(r, z)

∂

∂r
+

∂

∂z
D(r, z)

∂

∂z
− n(r, z)vσ

]
Φ(r, z)

= −δ(z − z0)δ(r − r0)/2πr0. (1)

The boundary condition without the halo edges is

Φ(r,±∞) = 0, and Φ(R, z) = 0. (2)

Now, we assume the diffusion coefficient D, gas den-
sity n and CR source density s depend on the coordinate
(r, z) in the following forms,

D(r, z) = D0 exp[r/rD + |z|/zD], (3a)

n(r, z) = n0 exp[−(r/rn + |z|/zn)], (3b)

s(r, z) = s0 exp[−(r/rs + |z|/zs)], (3c)

where D0, n0 and s0 correspond to the diffusion coeffi-
cient, gas density and CR source density at the galactic
center (0, 0), respectively.
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Naturally, we expect

rD � zD, rn � zn, rs � zs, (4)

and probably r
D

, rn, rs (' a few tens kpc or more)
might be two order of magnitude larger than zD, zn, zs
(' a few hundred pc).

Substituting Eqs. (3a) and (3b) into Eq. (1), we get,[(
1
r

∂

∂r
r+

1
rD

)
∂

∂r
+
(
∂

∂z
+

1
zD

)
∂

∂z
− n0vσ

D0
e−2u

]
Φ(r, z)

=
−δ(z − z0)
D(r0, z0)

δ(r − r0)
2πr0

, (5)

here

u =
r

r̄
+
|z|
z̄
, (6)

1
r̄

=
1
2

(
1
rn

+
1
rD

)
,

1
z̄

=
1
2

(
1
zn

+
1
zD

)
. (7)

Now, changing the variables (r, z) into (r, u), we search
for a solution in the form of a Fourier-Bessel expan-
sion, satisfying automatically the boundary condition
appeared in the second relation of Eq. (2)

Φ(r, u; r0, u0) =
∞∑
k=1

ϕk(r, u; r0, u0)J0(ξkr/R), (8)

with u0 = r0/r̄ + |z0|/z̄, (6′)

here J0 is the Bessel function of zeroth order, and ξk
(k = 1, 2, . . .) are the roots of J0(ξk) = 0.

Remembering the fact shown by Eq. (4), we expect
(more qualitative discussion will be presented elsewhere)

ϕk(r, u; r0, u0) ' ϕk(u; r0, u0), (9)

and applying the Fourier-Bessel expansion for δ(r − r0)
appeared in the righthand side of Eq. (5), we obtain[

d2

du2
+2ν

d

du
−(λ2

0e−2u+λ2
1,k)
]
ϕk = −qkδ(u−u0), (10)

ν =
z̄

2zD
= 1
/(

1 +
zD
zn

)
, (11)

λ0 =
√
n0vσ

D0
z̄, λ1,k =

ξkz̄

R
, (12)

qk(r0, z0) =
z̄

D(r0, z0)
J0(ξkr0/R)
πR2J2

1 (ξk)
. (13)

We should note 0 < ν < 1, and ν = 1/2 for zD = zn.

3 Solution of the diffusion equation

Fundamental solution of Eq. (10) is given with use of the
Modified Bessel functions, taking account of two cases,
z ≥ 0 and z ≤ 0,

ϕ
(±)
k (u; r0, u0) = a(±)Ak(Λ) + b(±)Bk(Λ), (14)

Λ(u) = λ0U(u), with U(u) = e−u, (15)

where

Ak(Λ) = ΛνIνk(Λ), Bk(Λ) = ΛνKνk(Λ), (16)

ν2
k = ν2 + λ2

1,k. (17)

In Eq. (14), (±) correspond to two solutions for z ≥ 0
and z ≤ 0 respectively. Four coefficients, a(±) and b(±),
are determined so that the boundary condition Eq. (2)
as well as the smooth contination of ϕ(+)

k and ϕ
(−)
k at

z = 0 are satisfied, taking into account the source term,
qk(r0, z0).

Now the final solution is given by

Φ(±)(r, u; r0, u0) =
(
U

U0

)ν ∞∑
k=1

qk(r0, z0)J0(ξkr/R)×

[
(Iνk(Λr)Iνk(Λ),Lk(Λr,Λ0))±

(Iνk(Λr), Iνk(Λr))+
−Lk(Λ,Λ0)θ(u0 − u)

]
(18)

where
Λ0 = λ0U0 with U0 = e−u0 , (19a)

Λr = λ0Ur with Ur = e−r/r̄, (19b)

and we introduced a round bracket

(A, B)± = A×B
† ± A

† ×B

∣∣∣∣
z=0

(20)

which is quite useful for the two component model (Shi-
bata II 2001) as presented in this volume. Lk(X,Y )
and the meaning of † are summarized in Appendix A.

4 Source integration

Integrating over (r0, z0) with use of the source distribu-
tion function s(r0, z0) given by Eq. (3c), we get

N(r, u) =
∫ R

0

2πr0dr0

∫ +∞

−∞
dz0s(r0, z0)Φ(±)(r, u; r0, u0).

(21)

Remarking two terms, D(r0, z0) in qk (see Eq. (13))
and s(r0, z0) in Eq. (3c), we find

e−(r0/rD+z0/zD)e−(r0/rs+z0/zs) = U2ω⊥
0 e−r0/r̂,

where we introduced following variables,

1/r̂ = 2(ω// − ω⊥)/r̄, (22)

and

ω// =
(

1 +
rD
rs

)/(
1 +

rD
rn

)
, (23a)

ω⊥ =
(

1 +
zD
zs

)/(
1 +

zD
zn

)
. (23b)
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Then we obtain∫ R

0

e−r0/r̂J0(ξkr0/R)2πr0dr0 = πR2Ξ (ξk, R/r̂), (24)

with Ξ (ξ, a) =
∫ 1

0

e−atJ0(ξt)2tdt. (25)

If rs ∼ rn and zs ∼ zn (equivalently ω// ∼ ω⊥ ∼ 1),
which is quite likely, we obtain a simple result

Ξ (ξk, R/r̂) =
2
ξk
J1(ξk). (25′)

Remarking (· · ·)± in Eq. (18), one finds ±-term ap-
peared in the round bracket cancels each other due to
the integration over z0 in two ranges, [−∞, 0] and [0,
+∞], and the integration over u0 is much reduced. In-
troducing an exchange-function for X ↔ Y ,

Ψk(X,Y, Z) =

{
ψk(X,Y, Z), for X ≤ Y
ψk(Y,X,Z), for X ≥ Y

}
(26)

with ψk(X,Y, Z) = L
†
k(λ0Z, λ0Y )

Iνk(λ0X)

I†νk(λ0Z)
, (27)

finally we obtain a solution for the CR intensity

N(r, u) =
s0z̄

2

D0
Uν

∞∑
k=1

Mk(r)Nk(U,Ur). (28)

Here we define

Mk(r) =
Ξ (ξk, R/r̂)J0(ξkr/R)

J2
1 (ξk)

' 2J0(ξkr/R)
ξkJ1(ξk)

, (29)

Nk(X,Y ) =
∫ 1

0

tω−1Ψk(t,X, Y )dt, (30)

with ω = 2ω⊥ − ν ' 2− ν. (31)

Eq. (28) may be rewritten

N(r, u) =
s0z̄

2

D(κr/2, z/2)

∞∑
k=1

Mk(r)Nk(U,Ur), (28′)

with κ =
(

1 +
rD
rn

)/(
1 +

zD
zn

)
' 1, (32)

the expression of which is useful for the two component
model (Shibata II 2001).

In the case of the galactic plane (z = 0, or equiva-
lently u = ur = r/r̄), we have a simple expression (see
Appendix A),

Ψk(t, Ur, Ur) =
Iνk(λ0t)

I†νk(Λr)
, (33)

and Eq. (28) is reduced to

N(r, r/r̄) ' s0z̄
2

D(r/2, 0)

∞∑
k=1

2J0(ξkr/R)
ξkJ1(ξk)

Iνk(λ0)

I†νk(Λr)
, (34)

with Iν(a) =
∫ 1

0

tω−1Iν(at)dt. (35)

5 Path length distribution

Path length distribution, P (x; r, z), is obtained by the
inverse Laplace transformation of N(r, u) for the cross
section σ, which is appeared in λ0 (see the first relation
of Eq. (12)). Here, we limit to the case of the solar
system (r = r�, z = 0) for the practical purpose.

Remarking to the term related to σ only,

1
2πi

∫ +i∞

−i∞

Iνk(λ0t)

I†νk(Λr)
eσxdσ. (36)

Since I†νk(Λr) (see Eq. (A1a)) has zero points on neg-
ative imaginary axis on the complex Λr-plane (note that
Λr = 0 is not a singular point in the integrand of Eq.
(36)), putting the `-th zero point for I†νk(Λr) = 0 as

Λr = −iΛk,`,

we find the Bessel function appeared in Eq. (36) is now
rewritten as

Iνk(λ0t)

I†νk(Λr)
=
Jνk(λk,`t)

J†νk(Λk,`)
, (37)

with Λk,` = λk,`Ur = λk,`e−r/r̄, (38)

where we defined a following function, corresponding to
I†νk(Λ),

J†νk(Λ) = 2ν̄kJνk(Λ)− ΛJνk+1(Λ). (39)

Then one can find simple poles Λk,` (` = 1, 2, . . .) on
positive real axis on Λr -plane, i.e.,

Λk,` = 2ν̄k
Jνk(Λk,`)
Jνk+1(Λk,`)

. (40)

From Eqs. (12) and (38), the cross section corresponding
to Λk,` is given by

1
σk,`

= − 1
Λ2
k,`

n0vz̄
2

D0
e−2r/r̄ ≡ −x̄k,`. (41)

Finally we obtain

P (x) = P0

∞∑
k=1

Mk(r�)
∞∑
`=1

λk,`Jνk(λk,`)

J†νk+1(Λk,`)
e−x/x̄k,` , (42)

with P0 =
2s0

n0v
e(1−ν)r�/r̄, (43)

where from Eq. (41),

x̄k,` = x̄�/Λ2
k,` with x̄� =

n̄�vz̄
2

D̄�
, (44)

n̄� = n0e−r�/r̄, D̄� = D0er�/r̄, (45)

and
Jν(a) =

∫ 1

0

tω−1Jν(at)dt. (46)

Average path-length x̄ is rather easily obtained by
(Berezinskii et al. 1990),
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x̄ = − 1
N

∂N

∂σ

∣∣∣∣
σ=0

= χ̄�
n0vz̄

2

D0
, (47)

χ̄� =
∑∞
k=1 χk(r�)χk,0(r�)Mk(r�)∑∞

k=1 χk,0(r�)Mk(r�)
, (48)

χk,0(r) =
1

νk + ν

1
νk + ω

eνkr/r̄, (49a)

χk(r)=
1
4

1
νk + 1

{
νk + ν + 2
νk + ν

e−2r/r̄− νk + ω

νk + ω + 2

}
. (49b)

6 Discussion

We obtained analytically the solution of 3D cosmic-ray
diffusion, taking account of a rather realistic structure
of our Galaxy, with the assumption that three critical
parameters, D (diffusion coefficient), n (gas density) and
s (CR source density), are all of the exponential type
in the radial distance r from the disk center and the
perpendicular ditance z from the galactic plane.

It should be remarked that the path-length distribu-
tion, Eq. (42), depends on the both gas density n̄� and
the diffusion coefficient D̄� at solar system, while cur-
rent diffusion model uses their average values for D. For
instance, it is known that the diffusion model is equiv-
alent to the leaky box model by putting (Berezinskii et
al. 1990)

x̄ = ngvhghh/D, (50)

where ng is the gas density in the disk, D is the average
diffusion coefficient in the Galaxy (D = Dg = Dh), and
hg, hh are the thickness of the disk and the halo respec-
tively. More discussion on the relation between Eq. (47)
and Eq. (50) will be done elsewhere.

In this paper we focused to the mathematical proce-
dure of the evaluation of the analytical solution, and the
explicit numerical results and the comparison with the
observed data will be reported in the conference.

Appendix A Summary of variables and functions

We summarize here variables and functions appeared in
the text. Our results are basically expressed with the
use of two independent Modified Bessel functtions, Iνk
and Kνk , and their linear combinations.

I†νk(Λ) = 2ν̄kIνk(Λ) + ΛIνk+1(Λ), (A1a)

K†νk(Λ) = 2ν̄kKνk(Λ)− ΛKνk+1(Λ), (A1b)

2ν̄k = ν + νk = ν +
√
ν2 + λ2

1,k. (A2)

With use of these functions, we find immediately (see
Eq. (16))

d

du
Ak(Λ) = −ΛνI†νk(Λ), (A3a)

d

du
Bk(Λ) = −ΛνK†νk(Λ). (A3b)

Further we define following functions,

Lk(X,Y ) = Iνk(X)Kνk(Y )− Iνk(Y )Kνk(X), (A4a)

L
†
k(X,Y ) = I†νk(X)Kνk(Y )− Iνk(Y )K†νk(X). (A4b)

Remarking a well-known relation

Iν(Λ)Kν+1(Λ) + Iν+1(Λ)Kν(Λ) = 1/Λ, (A5)

we find
Lk(Λr,Λr) = 0, L

†
k(Λr,Λr) = 1, (A6)

the result of which is used to obtain Eq. (33) in the text.
The round bracket defined by Eq. (20) is often ap-

peared in the present work, which comes from the smooth
continuation condition of ϕ(+)

k and ϕ(−)
k at z = 0. Then

we should note that this bracket is applied only for the
variable Λr, and other variables, Λ, Λ0, . . . , are freely
moved in and out the bracket. We show typical exam-
ples appeared in Eq. (18) in the following.

(Iνk(Λr), Iνk(Λr))+ =
Iνk(Λr)I†νk(Λr) + I†νk(Λr)Iνk(Λr)

= 2Iνk(Λr)I†νk(Λr), (A7)

(Iνk(Λr)Iνk(Λ),Lk(Λr,Λ0))− =

Iνk(Λr)Iνk(Λ)L†k(Λr,Λ0)− I†νk(Λr)Iνk(Λ)Lk(Λr,Λ0)

= Iνk(Λ)Iνk(Λ0)L†k(Λr,Λ). (A8)
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