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Abstract. Obtaining good statistics for accelerated particle
spectra, angular distributions and time distributions by sim-
ple Monte Carlo techniques is inefficient in relativistic shock
acceleration because simulation of diffusion in the down-
stream region is very computer time-consuming. In this pa-
per, I present Monte Carlo results for the angular and time
distributions of particles returning to an ultrarelativistic shock
after propagating downstream for the case of a random walk
with isotropic scattering. These distributions have been para-
metrized and collectively represent an “event generator” for
simulating quickly and efficiently the downstream part of an
acceleration cycle.

1 Introduction

Acceleration of charged particles at relativistic shocks may
occur in a variety of astrophysical locations, e.g. shocks in
relativistic flows in active galactic nucleus jets and in the rel-
ativistically expanding fireball of a gamma ray burst. The
nature of scattering plays an important role in shaping the an-
gular distribution of particles crossing the shock, and hence
the acceleration rate and spectrum (e.g. Kirk and Schneider
1987, Heavens and Drury 1988, Ellison et al. 1990). In the
case of oblique shocks the main acceleration process may
be shock drift acceleration (Begelman and Kirk 1990). The
acceleration time scale and efficiency for various scattering
models is discussed by Bednarz and Ostrowski (1996, 1999).
For recent reviews of relativistic shock acceleration see Bar-
ing (1997) and Ostrowski (2001).

One of the simplest propagation models to implement in
a Monte Carlo simulation is a random walk with isotropic
scattering after each step. This model is very probably unre-
alistic in the upstream region for most relativistic astrophys-
ical shocks, but it might possibly apply downstream if the
downstream plasma flow is highly turbulent, resulting in a
fully tangled magnetic field, although this is far from certain
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(Bednarz and Ostrowski 1996). Nevertheless, I adopt it here
because of its simple implementation in a Monte Carlo code;
the purpose of the present work being to develop numerical
schemes which will allow the rapid simulation of accelera-
tion to extremely high energies. The techniques developed
will be applied in an accompanying paper (Protheroe 2001)
to more realistic scattering models in future work, which may
also include in an approximate way shock modification by
non-linear affects.

The approach I use here is to consider particles of a par-
ticular momentum injected from upstream to downstream at
the shock (I use unprimed variables for the upstream frame,
singly-primed variables for the downstream frame, and doubly-
primed variables for the shock frame). For injection at a
particular angleθ′1 to the shock normal I obtain: (1) the
probability of returning to the shockProb.(return, θ′1), (2)
the angular distribution of particles crossing the shock from
downstream to upstream at a particular angleθ′2 to the shock
normalp(cos θ′2; θ′1), (3) the distribution of time spent down-
streamt′d before returning for anglesθ′1 andθ′2, p(t′d; θ

′
2, θ
′
1).

These distributions enable the downstream part of shock ac-
celeration to be simulated quickly and efficiently by sam-
pling (a) cos θ′2 from p(cos θ′2; θ′1), (b) t′d from p(t′d; θ

′
2, θ
′
1)

for a particle crossing from upstream to downstream at angle
θ1.

2 Acceleration cycle and definitions

I consider a strong relativistic shock, i.e. Lorentz factor of
shock in upstream frameΓ1 � 1, propagating through a rel-
ativistic plasma (ratio of specific heats: 4/3). In this case, the
downstream flow Lorentz factor isΓ2 ≈

√
9/8 and veloc-

ity is u2 ≈ c/3. I define the direction of flow in the shock
frame to be in the positivex′′-direction, and the shock to be
atx′′ = 0 (x′′ < 0 is upstream andx′′ > 0 is downstream).
The shock geometry and an acceleration cycle are illustrated
in Fig. 1.
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Fig. 1. Shock geometry and an acceleration cycle (p is particle mo-
mentum in upstream frame). Note: +x direction is defined differ-
ently in some papers (i.e. in some previous workcos θ = 1 points
upstream, whereas it points downstream in the present work).

3 Simulation of motion downstream

The scattering is modeled by isotropic scattering after trav-
eling a distance (free path) sampled from an exponential dis-
tribution with a given mean free pathλ′sc, e.g., in the case of
Bohm diffusionλ′sc = kr′gyro(p′) ∝ p′, wherek ≥ 1 is a
constant. The probability of returning to the shock, the time
spent downstream, and the angular distribution on returning
to the shock all depend on the injection angle downstreamθ′1
(see Fig. 1). In this simulation, a particle is deemed to have
escaped downstream if it goes beyond 8 scattering mean free
paths downstream of the shock. The probability of returning
to the shock obtained by Monte Carlo simulation is plotted as
a function ofcos θ′1 in Fig. 2, and the average value ofcos θ′2
is plotted as a functioncos θ′1 in Fig. 3. Note that in order to
cross the shock from upstream to downstreamcos θ′1 must be
between−β2 and 1, whereβ2 = 1/3.

Fig. 2. Probability of returning to the shock after crossing the shock
from upstream to downstream withcos θ′1.

In the following sections I explore the angular and time
distributions of returning particles, and provide a parametriza-
tion of these distributions which will facilitate efficient Monte

Fig. 3. Average value ofcos θ′2 on returning to the shock after cross-
ing the shock from upstream to downstream withcos θ′1.

Carlo simulation of relativistic shock acceleration.

4 Angular distribution of particles returning to the shock
from downstream to upstream.

Particles were injected at the shock at 100 discrete values of
cos θ′1 in the range -1/3 to 1, and their directions on returning
to the shock were binned in 100 bins withcos θ′1 in the range -
1 to -1/3. The distribution ofcos θ′2 on returning to the shock
after crossing the shock from upstream to downstream for
three differentcos θ′1 values are shown by the histograms in
Fig. 4(a). I have performed a least squares fit to thecos θ′2
distributions, for allcos θ′1 values simulated, using a function
of the form

p(cos θ′2; cos θ′1) = (1 + α)(3/2)(1+α)(− cos θ′2 − 1/3)α,

and these fits forcos θ′1 = −0.3, 0, and1.0 have been added
to Fig. 4(a) and are seen to be in reasonable agreement with
the histograms. The exponentα(cos θ′1) giving the best fit is
plotted as a functioncos θ′1 in Fig. 4(b).

For particles downstream which return to the shock, the
time spent downstream,t′d, depends not only on the direc-
tion in which the particle crossed the shock from upstream
to downstream,θ′1, but also on the direction of the particle
on returning to the shock,θ′2 (see Fig. 1). The average time
spent downstream is plotted as a function ofcos θ′1 in Fig. 5.
Note that all times downstream are measured in units of the
downstream mean scattering time,t′sc = λ′sc/c.

5 Distribution of time spent downstream

Examples of the distribution of time spent downstream are
given in Fig. 6(a)—(d) for various combinations of directions
of crossing the shock from upstream to downstream and from
downstream to upstream. The distribution of the downstream



2008
3

Fig. 4. (a) Distribution ofcos θ′2 on returning to the shock after crossing the shock from upstream to downstream withcos θ′1 = −0.3, 0, and
1.0 as labelled. The histograms show the Monte Carlo results and the curves show the fits. (b) Exponentα in the fit to thecos θ′2 distributions
as a function ofcos θ′1.

Fig. 5. Average time spent downstream in units of the downstream
scattering time,t′sc, before returning to the shock after crossing the
shock from upstream to downstream at angleθ′1.

time obtained from the full Monte Carlo simulation has been
fitted by the sum of two exponential distributions,

p(t′d; θ
′
2, θ
′
1) =

a

τ1
exp(−t′d/τ1) +

1− a
τ2

exp(−t′d/τ2),

wherea, τ1 andτ2 are functions of(θ′2, θ
′
1).

I determine the functionsa(θ′2, θ
′
1), τ1(θ′2, θ

′
1) andτ1(θ′2, θ

′
1)

from the first three moments of the distributionsp(t′d; θ
′
2, θ
′
1),

i.e. 〈t′d
n(θ′2, θ

′
1)〉 for n = 1, 2, 3, by analytic solution of the

three simultaneous equations

〈t′d〉 = aτ1 + (1− a)τ2
〈t′d

2〉 = 2[aτ12 + (1− a)τ22]

〈t′d
3〉 = 6[aτ13 + (1− a)τ23]

where for brevity I have dropped the explicit dependence on
(θ′2, θ

′
1).

I have performed a least squares quadratic fit of the form

〈t′d
n(θ′2, θ

′
1)〉 = bn0(cos θ′1) + bn1(cos θ′1) cos θ′2 + bn2 cos2 θ′2

to 〈t′d
n(θ′2, θ

′
1)〉 obtained from the full Monte Carlo simula-

tion, and found the dependence of the coefficients ofcos θ′1
can be well represented by

bnj(cos θ′1) = c0nj + c1nj cos θ′1 + c2nj cos2 θ′1

where the coefficientscinj are given in Table 1.

Table 1. The coefficientscinj

i = 0 i = 1 i = 2

n = 1 j = 0 0.52938775 1.6197228 -0.81077940
n = 1 j = 1 -3.9592780 0.021014775 -0.011342470
n = 1 j = 2 -0.50736811 0.0 0.0
n = 2 j = 0 -1.1471720 16.573265 -6.1717835
n = 2 j = 1 -29.217302 -10.154183 5.4653394
n = 2 j = 2 14.860891 0.0 0.0
n = 3 j = 0 11.353390 246.78429 -50.493735
n = 3 j = 1 -202.20586 -362.75654 188.74139
n = 3 j = 2 634.22088 0.0 0.0

Comparison of the distributions obtained from the fits to
〈t′d

n〉 described above is made with the examples of the dis-
tribution of time spent downstream from the Monte Carlo
simulation given in Fig. 6(a)—(d), and seen to reproduce the
Monte Carlo results well.

6 Summary

For the case of random walk plus isotropic scattering, the
distributions given in this paper provide a quick and efficient
method for simulation of propagation of particles downstream
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Fig. 6. Examples of distributions of time spent downstream for various combinations of (cos θ′1, cos θ′2): (a) (0.3267,-0.3367), (b) (-0.2067,
-0.3367), (c) (0.5933, -0.9967), and (d) (-0.8600, -0.6700). Solid curves: distributions obtained from the fits to〈t′d

n〉 described in the text.

in shock acceleration by ultrarelativistic shocks. In effect
they collectively represent an “event generator” for simula-
tion of the downstream part of the acceleration cycle. An
application of these distribution is described in an accompa-
nying paper (Protheroe 2001). In future work I plan to inves-
tigate the development of similar downstream event genera-
tors for more realistic scattering models.
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