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Abstract. Thepossibilityis investigatedof installinga huge
solarneutrondetectorin lakes locatedhigh mountains.In-
steadof usingconventionalneutronmonitors, � He propor-
tional countersaresupposedto be placedin the lake water.
High energy ( � 100 MeV) neutronsenteringinto the water
arethermalizedanddetectedby the countersalignedasfar
apartaspossible.Theoptimalalignmentof counterswasde-
terminedusingtheGeant3MonteCarlosimulator. We have
found,however, thelargecrosssectionfor thermalneutrons
in water doesnot allow the installationof the countersat
wide separation.With the optimal separationof 15 cm, an
extremely large detectorcannotbe realized. A testexperi-
menthasbeenperformedwith a � He proportionalcounter,
which is setin awatertankat Mt. Norikurain Japan.

1 Introduction

Thesunis theonly robustnearbyastrophysicalacceleratorof
ions. The studyof solarflares,wherehigh energy particles
aregenerated,is believed to provide us with fruitful infor-
mationon the problemof cosmic-rayacceleration.On the
otherhand,dueto theinterplanetarymagneticfield, low en-
ergy solarcosmic-rayscannotarrive at theearthstraightfor-
wardly. To avoid suchpropagationeffects,observationsof
neutralparticleshave beenproposed(Ramatyet al., 1983).
Neutronsproducedby acceleratedprotonsin thesolaratmo-
sphere(’solarneutrons’hereafter)are the bestprobeto in-
vestigatetheaccelerationof protons(or ions).

At groundlevel, solarneutronsaredetectedwith thetradi-
tionalneutronmonitorsspreadall overtheworld andwith the
specialneutrontelescopesdevelopedby our group. So far,
solarneutronshavebeendetectedin associationwith anum-
ber of major solarflares(Lockwood andDebrunner, 1999;
Muraki et al., 1992). Althoughseveral interestingcandidate
eventsobservedduringthesolarcycle23arenow underanal-
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ysis(Tsuchiyaetal., 2001;Flueckigeretal.,2001),it is time
to developdetectorswith alargersensitivity for thenext gen-
eration.

The ideapresentedin this paperis to expandtheconcept
of the traditionalneutronmonitor. Neutronmonitorsthem-
selvesaredifficult to enlargebecausethey useamassivelead
for producingthermalneutrons.We have studiedthepossi-
bility of substitutingwaterfor lead. Becausethereareusu-
ally lakesin thehighmountainswherethesolarneutrontele-
scopeshavebeenplaced,hugeneutrondetectorscouldbere-
alizedif thesubstitutionworkseffectively. We alsopropose
the useof � He proportionalcounters,which have a higher
sensitivity to thermalneutronsthanBF� counters.

In this paper, we first describethe basicpropertiesof the
� He countersin section-2.In section-3,thebehavior of ther-
mal neutronsin variousmaterials(water, lead) is discussed
with the aid of Monte Carlo calculationsusingGeant3. In
section-4,the optimal alignment,separationof the new de-
tectorsand their sensitivity arepresented.Someresultsof
testexperimentsat Mt.Norikura is alsopresentedin section-
5. Finally, ourconclusionsaresummarizedin section-6.

2 � He counter

The helium-3 proportional counter used in this study
(LND25373 producedby LND, Inc.) is a cylindrical tube
with 50 mm diameterand200cm length. The tubeis filled
with 3040torr of � He gas. The ionizationlossof a passing
cosmicray muonis typically below 10 keV, which is negli-
giblecomparedwith theQ-valuewhichoccursin thenuclear
reactiondescribedbelow.

Thermalneutronsarecapturedby � He throughthe reac-
tion, � He+ n ��� H + p. TheQ-valueof thereaction,765keV,
is sharedinto thekineticenergiesof � H andp. Thecrosssec-
tionof thisreactionrapidlyincreaseswith decreasingneutron
energy: � 10� barnsat 100 eV and � 10� barnsat 0.01eV.
Thecrosssectionis slightly higher(lessthanfactor2) than
thatof theBF� countersthatareusedin conventionalneutron
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Fig. 1. Typical simulatedtracksof neutronsin waterandlead.Thethreeleft panelsshow thetracksin waterandtheright panelshows the
tracksin lead. Notethat thehorizontalscaleis differentfor thetwo materials.Eachpanelcorrespondsto a singleincidentneutronwith an
energy of 100MeV. A neutronis injectedat theposition(0, 0) into thedownwarddirection.

monitors. However, becausea � He countercanbeoperated
with a high pressure(e.g. 3000torr), a high detectioneffi-
ciency canbeachieved.In thecaseof LND25373,morethan
50%of neutronswith energybelow 0.5eV aredetectedwhen
they pass5 cm(diameterof thecounter)in thecounter.

3 Thermal neutrons in water and lead

Primary solar neutronswith energies below 100 MeV suf-
fer heavy attenuationin theatmosphereof theearth(Shibata,
1994)aswell asdecayingduringtheirflight betweenthesun
andtheearth.Thereforefor ground-basedobservations,the
usefulenergy rangeis above 100 MeV. To detectsuchhigh
energy neutronsthroughanuclearcapturereaction,thermal-
izationof theneutronsis acrucialprocess.At thesametime,
thermalizedneutronsmustdiffusethroughthematerialuntil
they meetoneof the counters.Material with a large cross
sectionfor higher energy neutronsand small crosssection
for lower energiesis ideal.

Secondaryneutrontracksbothin waterandleadweresim-
ulatedusingGeant3.Sometypical tracksfor neutronswith
anincidentenergy of 100MeV areshown in Fig-1. Thermal
neutronsweretrackeddown to anenergy of 10�� eV. Appar-
ently, the total diffusion pathlengthis longer in lead. This
meansthat neutronshave a chanceto meeta proportional
counterwith a largerprobability. Thatis thereasonwhy lead
is chosenasaproducerfor neutronmonitors(Hatton,1971).
In spiteof its disadvantages,adetectorusingwateris capable
of enlarging theareaup to thesizeof a lake. To optimizethe
detectionefficiency of thedetector, countersmustbealigned
at intervalsof theorderof a typicaldiffusionlength.Theav-
eragedistribution of thermalneutronsin water is presented

in Fig-2,wherethenumberdensityof neutronswith energies
below 1 keV is plotted. When100,000100 MeV neutrons
wereinjected,6,400low energy neutronswerefoundat the
maximumcontourof Fig-2. Neutronswerecountedin ev-
ery 5 cm � 5 cm � 5 cm cubic volume. From Fig-2, it
canbe seenthat the optimumseparationof the countersis
about15 cm at a depthof 30 cm. In furthersimulations,we
fixed the separationat this value. Fig-2 also indicatesthat
neutronsarewidely distributed in the vertical direction. It
would thereforebeeffective to install countersalignedin the
vertical direction. Of course,suchan alignmentmakesthe
physicalareaquite small, but it would achieve a higherde-
tection efficiency. If we definethe sensitivity as (physical
area)� (efficiency), ahigherefficiency maycompensatefor a
smallerarea.

4 Properties of the new detector

We have simulatedtwo casesof counteralignment. Oneis
horizontaland the other is vertical as shown in Fig-3. In
both cases,the separationwasfixed at 15 cm asdescribed
in section-3.For thehorizontaldesign,counterswereplaced
at a depthof 30 cm wherethe numberof thermalneutron
reachesa maximum. Vertically incidentneutronswereuni-
formly injectedinto thewaterwithin theareashown shaded
in Fig-3. In the caseof horizontalalignment,six counters
wereplacedin a mannersimilar to anexisting neutronmon-
itor. In thecaseof verticalalignment,900counters(30 � 30
array)wereused.Althoughthedetectionefficiency becomes
smallerneartheedgeof thearrays,theeffect becomesneg-
ligible if we usea largenumberof counters.This is because
the typical diffusion length of thermalneutrons,15 cm, is
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Fig. 2. Numberdensityof low energy neutrons( � 1 keV) in water.
6,400low energy neutronswerefoundat thedarkestcontourwhen
100,000neutronswith 100MeV wereinjected. The contourlevel
is linearly scaled. The numberof neutronswascountedin every
5 cm � 5 cm � 5 cm cubic volumealongthe x-z plane. (The z-
axisis definedastheinjectiondirectionandthex-axisis arbitrarily
definedin thehorizontaldirection.)

smallerthanthesizeof arrayswepropose.Therefore,were-
gardthedetectionefficienciesobtainedusingsimulationsas
beinguniformover thearray.

The detectionefficienciesare summarizedin Fig-4 as a
function of the incidentneutronenergy. As expectedfrom
section-3,higherefficiency isobtainedwith theverticalalign-
ment. If we assumethe useof 1000 counters,the physi-
cal coveragebecomes300m� and22.5m� for thehorizontal
and vertical casesrespectively. Combinedwith the detec-
tion efficiency, the sensitivity becomessomesquaremeters
at 100MeV, which is comparablewith thesensitivity of cur-
rentlyoperatedneutronmonitors.In caseof the6NM64neu-
tron monitor, the physicalareais 6 m� andthe efficiency is
0.25at100MeV. This resultsin asensitivity of 1.5m� , same
orderof our waterdetectors.

15cm

200cm

neutron

200cm

30cm

neutron

15cm
15cm

200cm

Fig. 3. Simulatedset-upsof the � Hecountersin water. Top: For the
caseof ’Horizontal’ alignment.Thecounterswerefixed at 30 cm
underthe watersurfaceat intervals of 15 cm. Neutronswereuni-
formly injectedin a 200 cm � 15 cm areaon the surfaceasindi-
catedby theshadow in thefigure.Bottom: For thecaseof ’Vertical’
alignment.Thecounterswereagainplacedat15cmintervals.Neu-
tronswereinjectedin anarea15cm � 15cm on thesurface.

5 Test experiments

FromNovember2000,wehavecontinuouslyoperateda � He
counterplacedin thewatertankat theMt. Norikuracosmic-
ray observatory (137� .5E,36� .1N, 2770a.s.l.). Thecounter
is containedin a stainlesssteelwaterproofpackagewith an
amplifieranda discriminatorcircuit (Fig-5). High voltageis
generatedby a DC-DC converterin thepackage.Througha
half yearof winter, thecounterhasgivenastableoutputeven
underthesevereconditionsexistingon thehigh mountain
(-25� C minimumtemperature).

Becausethe counteris placedin deepwater(200 cm be-
low thesurface),thecountingrateis smallasexpectedfrom
Fig-2. Theabsolutecountingrateexpectedfrom cosmic-rays
will becalculatedusinga simulationto validatethesimula-
tion resultsdescribedabove. Moredetailedtestsof thecount-
ing rateareplannedaftertheice in thetankmelts.
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Fig. 4. Detectionefficiency of thewaterneutrondetectorsasafunc-
tion of the incidentneutronenergy. Resultsfor thetwo alignments
arepresented.Becausetheefficiency is definedas(Numberof de-
tectedthermalneutrons)/(Numberof incidentneutrons),it becomes�

1.0 whenmultiplicity is large. This definition is consistentwith
thatusedfor traditionalneutronmonitors.

6 Conclusions

A new generationsolarneutrondetectorusinga hugevol-
umeof lake waterhasbeenstudied.Thewateris supposed
to work asaproducerof thermalneutronsasis thecasewith
leadin traditionalneutronmonitors.However, aMonteCarlo
studyshowedthethermalneutronsdid not spreadin thewa-
ter aseffectively as in lead. This is mainly becauseof the
differenceof thecrosssectionfor thermalneutronsbetween
waterand lead. The relatively large crosssectionin water
preventsthermalneutronsfrom arriving at countersaligned
at wideseparation.Evenwhenusing1000 � He counters,the
sensitive areaof thedetectoris only sameorderof thatof a
6NM64neutronmonitor.

Although water is not a good producerof thermalneu-
trons,it would beworth consideringthepossibilityof using
naturalmaterials(rocks,for example)to realizeanextremely
largeareaneutrondetectorfor thenext solarcycle.
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