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Field line random walk for non-axisymmetric magnetic fluctuations
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Abstract. The problem of the random walk of magnetic field axisymmetric in some cases of interest (Jokipii, 1973; Jokipii
lines in a turbulent magnetic field is reconsidered for the casest al., 1995; Burger and Hattingh, 1998). Particular interestin
of magnetic fluctuations that are non-axisymmetric with re-the non-axisymmetric perpendicular diffusion and field line
spect to the mean magnetic field. This extension is trivialrandom walk derives from recent studies that suggest a pos-
for quasilinear theory and equivalently for the case of one-sible role of enhanced latitudihal transport of cosmic rays at
dimensional slab fluctuations. For the general case of transhigh heliographic latitudes (Jokipii et al., 1995; Burger and
verse fluctuations of arbitrary amplitude the problem is moreHattingh, 1998). The generalization to non-axisymmetry is
complex. Here we derive the magnetic field diffusion coeffi- immediate in quasilinear theory, since the diffusion coeffi-
cient for two-component fluctuations, a superposition of slabcient is linear in the variances, but in general this is not the
plus two-dimensional fluctuations that has proven useful forcase. In the present paper we develop a theory for the non-
various solar wind applications. Using homogeneity and dif- axisymmetric field line random walk in a more general non-
fusion approximations and Corrsin’s independence hypothperturbative scheme (Matthaeus et al., 1995). The approach
esis, we derive non-perturbative, analytic formulae, includ-is useful for general transverse turbulence, although we ap-
ing closed-form expressions for special cases of interest irply it explicitly here to a two-component model of fluctu-
the heliospheric transport of charged particles, such as saations which has been useful in solar wind and cosmic ray
lar modulation of cosmic rays and particle acceleration at ascattering studies (Matthaeus et al., 1990; Bieber et al., 1994,
nearly perpendicular shock. 1996). Our principal results are a general framework for the
non-axisymmetric field line random walk as a set of coupled
bi-quadratic equations, and perhaps more useful, closed so-
) lutions for several cases. The latter should find immediate
1 Introduction application in heliospheric scattering problems such as cos-

mic ray modulation.
Although diffusion of charged particles perpendicular to the 4

magnetic field in a collisonless astrophysical plasma remains

anincompletely solved problem (Giacalone and Jokipii, 19992 Calculation of Field Line Diffusion for Non-axisym-
Mace et al., 2000), it is clear that it is closely related to the  metric 2D+Slab Turbulence

simpler problem of random walk of magnetic field lines in

the presence of magnetic turbulence (Jokipii, 1966; Jokipiiln the 2D + slab model of magnetic turbulence, we assume
and Parker, 1968). The classic quasilinear calculation (JokipiB = Bo+ b(z,y,z), whereBy = By, b L %, andb =
1966) shows that field line random walk is associated withb*” (z, y)+ b%'“*(z). In general, we can write

the “power at zero wavenumber” of the turbulence, as con- ,p R

venient shorthand for a diffusion coefficient proportional to (@.y) =V xa(z,y)2], (1)
the product of the energy density in the fluctuations and theyhere a? is the vector potential for the 2D component of
correlation scale. In the usual treatments, the magnetic flucmagnetic turbulence.

tuation properties are assumed to be axisymmetric with re- [ et A(k,, k,) be the Fourier transform of the autocorre-
spect to the mean magnetic field. However there are indicatation (a(0,0)a(z,y)). Then axisymmetry of the 2D turbu-
tions that the variances of the fluctuation vectors may be nontence implies thatd depends only on the magnitude =

Correspondence td. Ruffolo \/ k2 + k2, i.e., is constant along circles k., k,) space.
(david@astro.phys.sc.chula.ac.th) To consider non-axisymmetric 2D turbulence, we suggest a
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form in which A is instead constant along ellipseqin., k) wherel; and f,; are the correlation length and fraction of tur-
space, with an ellipticity parametédefined as the aspectra- bulent energy, respectively, of tik@omponent of slab turbu-
tio as shown in Figure 1. [Thus the andy-directions are lence. In the limit that the slab fraction goes to zero, we have
defined by the principal axes of in (k,, k,) space.] This the field line diffusion coefficients

form of non-axisymmetry permits the axisymmetric cgse;

1, and still allows us to solve the problem analytically. D2P = ¢p3P
1
D2D _ _D2D
k, k, v £
Ab
D3P = . (5)
f + \/iB()
1 [Note thatD3!%® o (b/By)? while D?P o (b/By).] Then
the general result for the combined, long-distance field line
1 1 diffusion coefficients of non-axisymmetric 2D+slab turbu-
ks kz lence is
\J 1 1
D.D
y (5, L7 5, o
_5 sla
(Dm + §«/DmDy> (D, — D) = T, ©)
axisymmetric non-axisymmetric
wherel = 2(D3P)2,
Fig. 1. Contours of constant powet(k, k,) of the 2D poten- These equations are straightforward to solve numerically
tial function for the axisymmetric case and for the type of non- for a given case of interest. Furthermore, it is possible to
axisymmetric 2D turbulence we consider. scale diffusion coefficients accordingfd, and anisotropies

according tc¢ (not shown here) to reduce the above to equa-
Considering the magnetic correlation function of the 2D tions that depend on only two parameters, allowing their lim-
componentR?P (z,y) = (b7 (0,0)b3" (2, y)) (we assume iting behavior to be readily elucidated.
homogeneity of the turbulence), and its Fourier transform,
P2P(ky, ky), €q. (1) implies that
3 Applications to Various Physical Limits
PP (keky) = KAk k) PP ’
Pff(kmky) = k2A(ky, k). 2) While the coupled bi-quadratic equations (6) are not diffi-
o S ~cultto solve, for certain physical limits there are closed-form
Previous work (Matthaeus et al., 1995) has identified an im-so|utions with interesting interpretations. There are certain
pprtant scale length for the 2D contribution to perpepdlcularphysica| inputs one should specify for a given application,
diffusion, called the “ultrascale” or “mesoscale,” which we e g for solar modulation in different parts of the heliosphere,

define here as or anomalous cosmic ray acceleration at different parts of the
) 1% [ Adk,dk solar wind termination shock. The “user” of this calculation
A= —o0 - —oo Y should specify:

J oo 2 (P2P + By )dkydk, By, the mean magnetic field,
B (a?) 3 b, the root-mean-squared turbulent magnetic field,
(1= for? 3 fs, the slab fraction of turbulent energy,

n* = fsz/ fsy, the slab anisotropy,
whereb® = (b3 + b;), andf; is the fraction of the turbulent ¢, the correlation length dfsla?,

energy in the slab component (the remainder being in the 2D ¢,, the correlation length dleab’
component). , , ), the ultrascale (of 2D turbulence), and

Space does not permit a complete presentation of our derlva-g the anisotropy of 2D turbulenceX = D20/ D2P).
tion, which follows the non-perturbative approach of Matthaeus ™’ vy
et al. (1995) (see also Ruffolo and Matthaeus, these pro-

ceedings). We again assume homogeneity, diffusion, anq;’ities are not available, so one must make educated guesses,

Corrsin's mdepend.erlce hypothesis. In the lidit — oo, or ad hocapproximations. Therefore, we present solutions
we recoyer the Jokipii and Parker (1968) results for slab tur-Of the general equations (6) for specific limits and approxi-
bulence: mations. [Naturally, the simplest approximation is that either

lifeb® slab or 2D turbulence can be neglected, in which case equa-

slab __ _
bt = B2 (i =2y), @ tions (4) or (5) suffice.]

In many applications, direct measurements of these quan-
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If n and¢ are not known, a simple approximation is to set

them equal, in which case equations (6) decouple and reduce
to the form obtained by Matthaeus et al. (1995):

D._sln,b Dglab 2
p =2 w( )+<D$D>2 (i=ay. @

2

Furthermore, if all other input values are fixed uand ¢
both tend to 0 oro, then it can be shown that the 2D con-
tribution dominates. Thus if one employs such limits, say in
the outer heliosphere where field fluctuations might become
increasingly anisotropic (e.g., if “frozen in” the solar wind),
then one must also uge; « b/ By.

Suppose that — oo, while ¢ is fixed. (If n instead goes
to zero, the roles of- andy-components are reversed.) If
Dslab < D2P | then the diffusion coefficients tend to 2D
values. If, on the other hand):!*® > D2P thenD, =~
Dileb and D, ~ 2D2PDZP /Dsleb, which is much lower

than DED. This is similar to the “paradox” discussed ear-
lier; here, increased slab turbulence in thdirection leads
to decreased-diffusion.

Finally, we consider the case whefe— oo for fixed 7.
Let D5'*® be the geometric mean db;'e® and D3'e>. If
D3lab > D2P thenD; =~ Dsleb. If Dsleb < D?P, then
D, ~ Dj's while D, ~ 2D2P D2P /D;'e®, which is again
much lower thanD2? .
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