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Abstract. Cosmic ray propagation in a galactic diffusion
model is considered. The equation for the path-length dis-
tribution function is presented in the form of a stochastic dif-
ferential equation solved starting from an observer location,
and the distribution of cosmic rays on matter thickness tra-
versed in the interstellar gas is calculated. A realistic spatial
distribution of cosmic ray sources and interstellar gas den-
sity are taken into account in the calculations. The obtained
path-length distribution is close to the exponential one. This
justifies the feasibility of the leaky box approximation for
studies of interstellar transport and nuclear fragmentation of
energetic stable nuclei. The clumpiness of the interstellar gas
in the form of dense clouds and a correlation of gas density
and cosmic-ray source density may lead to the deviation of
the distribution function from an exponental at small path
lengths.

1 Introduction

The study of the transport of energetic nuclei in the Galaxy
requires a consideration of their spallation which is due to
the interaction with the interstellar gas nuclei. Hundreds of
isotopes should be included in the calculations. There is a
powerful method to solve a set of transport equations for the
generations of nuclei linked by nuclear fragmentation of par-
ent isotopes into more light progenitors. This method, the
weighted slab technique, consists of splitting of the prob-
lem into astrophysical and nuclear parts, see Berezinskiet
al. (1990). The nuclear fragmentation problem is solved
in terms of the slab model wherein the cosmic ray beam is
allowed to traverse a thickness,x g/cm2, of the interstel-
lar gas and these solutions are integrated over all values of
x weighted with a distribution functionG(x) that is derived
from an astrophysical propagation model. The standard weighted
slab method (Protheroeet al. , 1981; Garcia-Mũnoz et al.
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, 1987) gives only an approximate solution at low energies
where nuclear cross sections and diffusion depend on en-
ergy, and ionization energy losses are significant. It also
gives wrong results when theA/Z ratios are different for
parent and daughter nuclei. A modification of the weighted
slab method (Ptuskinet al. , 1996) makes it rigorous for the
case of separable dependence of the diffusion coefficient on
particle energy (or rigidity) and position with no convective
transport. (The convective transport can be treated rigorously
by this method in some special cases.)

Interpretation of data on cosmic ray composition and, in
particular, on the abundance of stable secondary isotopes sug-
gests an exponential form of the path-length distributionG(x) ∼
exp(−x/Xe) with an energy dependent parameterXe, the
escape length. A position independentXe(E) is character-
istic of the leaky box model, the approximation commonly
used in practical calculations of cosmic ray propagation. The
description of cosmic ray propagation in the diffusion model,
that is closer to physical reality, is more complicated. How-
ever, at least in the case of stable and not very heavy nuclei,
the solution of the diffusion equation for an observer at the
galactic disk can be well approximated by the equation typi-
cal for the leaky box model. The relation between parameters
of the flat-halo diffusion model and the leaky box model is
given by the equation

Xe ≈ µβcH/2D (1)

valid atσ � mh/(XeH) . Hereβc is the particle velocity,
µ is the surface mass density of the galactic disk,H is the
height of the cosmic ray halo,D is the cosmic ray diffusion
coefficient,σ is the total fragmentation cross section,m is
the average mass of an interstellar atom,h is the height of
the galactic gas disk, and it is assumed thath� H.

Investigations of path-length distributions in diffusion mod-
els were mainly made with the use of analytical methods
(Berezinskiet al. , 1990; Ptuskinet al. , 1997) and thus were
limited by the models with simplified cosmic ray source and
interstellar gas distributions that allow one to obtain analytic
solutions. The Monte-Carlo simulations performed by Web-
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ber (1993) were also made for a simple case ofδ(z) distribu-
tion of sources and an exponential distribution of gas in one
dimension perpendicular to the galactic plane. Such simpli-
fied models are not acceptable for many problems of cosmic
rays astrophysics. The analysis of diffuse galactic gamma-
ray radiation generated by cosmic ray particles (Stronget
al. , 1998) and the determination of cosmic ray age from
the abundance of radioactive isotopes (Ptuskin & Soutoul ,
1998) present examples of more advanced models.

In the present work we describe a prime numerical method
of determination of path length distribution function in diffu-
sion models with arbitrary three-dimensional distributions of
cosmic ray sources, interstellar gas density, and arbitrary spa-
tial dependence of the cosmic ray diffusion coefficient. This
economic approach is based on the solution of a backward
stochastic differential equations starting from an observer po-
sition. The objective is to study models that reflect realistic
astrophysical conditions in the Galaxy and to find justifica-
tion and limits for popular empirical models of cosmic ray
propagation.

2 Path length distribution formalism

It was shown in Ptuskinet al. (1996) that one can present
the cosmic ray intensity as

Ii(r, E) =
∫ ∞

0

dxG(x, r)Fi(x,E). (2)

whereFi(x,E) represents the fragmentation and energy change
of a particle of theith species as a function of grammage,x,
and energy,E, andG(x, r)is the path length distribution of a
characteristic particle species.G obeys the following diffu-
sion equation that depends on the interstellar gas distribution
and on the properties of particle wandering in the Galaxy but
does not depend on particle energy or on the type of nucleus:

ρ(r)
∂G

∂x
− 1

3
∇l(r)∇G = s(r)δ(x), (3)

wheres(r) is the spatial distribution of cosmic ray sources.
We shall assume the free exit of particles at the galactic cos-
mic ray halo boundaries, i.e.G |Σ= 0.

3 Stochastic differential equation technique

Using the reciprocity principle for the corresponding Green
functions (Morse & Feshbach , 1953), the solution of equa-
tion (3) at the observer positionr0 can be presented as

G(r0, x) =
∫ ∫ ∫

d3rs(r)ϕ(r, x), (4)

where the Green functionϕ obeys the equation

ρ(r)
∂ϕ

∂x
−∇ l(r)

3
∇ϕ = δ3(r− r0)δ(x), ϕ |Σ= 0. (5)

Introducing a new functionψ = ρ(r)ϕ (we assume here
that densityρ(r) 6= 0 everywhere in the system including its

boundaries), one can obtain the following equation forψ in
a canonical Fokker-Planck form:

∂ψ

∂x
−∇2

(
l

3ρ
ψ

)
+∇

(
(∇l)
3ρ

ψ

)
= δ3(r− r0)δ(x). (6)

This leads to the following stochastic differential equation
for the trajectoryr(x) of diffusing particle (Gardiner , 1983):

dri =
(∇l)
3ρ

dx+

√
2l
3ρ
dWi (7)

with the initial conditionr = r0 at x = 0. HeredWj is a
Wiener process given by the Gaussian distributionP (dWj) =
(2πdx)−1/2 exp

(
−dW 2

j /2dx
)
. The absorption of particles

is assumed at the boundaries of the system.
Eq. (6) is the equation for the distribution functionψ. As-

suming that a large numberN of random particle trajectories
r(m)(y) were emitted from the pointr0, one can present the
functionψ as

ψ =
1
N

N∑
m=1

δ(r− r(m)(x)) |r∈V ; ψ = 0 |r/∈V . (8)

Eqs. (4), (8) now give the following expression for the
distribution functionG:

G(r0, x) =
1
N

N∑
m=1

s(r(m)(x))
ρ(r(m)(x))

=
〈
s(r(x))
ρ(r(x))

〉
. (9)

The condition of particle absorption at the outer halo bound-
aries implies thats(r(m)(x)) = 0 atx > xa, wherexa is the
matter thickness traversed by a particle up to the moment it
reaches the boundary.

Eqs. (7) and (9 determine the path-length distribution func-
tion G through a family of diffusion trajectoriesr(m)(x),
m = 1, 2...N, N >> 1 emitted from the observer position
r0.

4 Numerical simulations

The numerical calculations of the path-length distribution func-
tion can be fulfilled with the use of Eqs. (7), (9). We illustrate
with two examples.

Let us consider the flat halo model where cosmic ray sources
have the distributions ∼ exp(− | z | /hs) with the charac-
teristic scale heighths = 200 pc. The total thickness of the
galactic cosmic ray halo is taken to be2H = 5.7 kpc. The
hydrogen gas distribution consists of 4 layers with exponen-
tial profiles:nH(z) =

∑
niexp(− | z | /hi), i = 1, 2, 3, 4.

The component with parametersn1 = 0.45 cm−3, h1 = 130
pc represents the smeared out contribution of small numerous
neutral clouds, the componentn2 = 0.21 cm−3, h2 = 200
pc represents the more extended warm medium, the compo-
nentn3 = 0.025 cm−3, h3 = 1 kpc represents the ionized
hot gas, and the componentn4 = 0.44 cm−3, h4 = 60 pc
represents the molecular hydrogen. The interstellar medium
consists of90% of hydrogen and10% of helium atoms. The
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interstellar helium is distributed in the same way as hydro-
gen. The accepted diffusion mean free path isl = 1 pc, that
corresponds to the diffusion coefficientD = 3×1028β cm2/s
typical for cosmic rays with energies about few GeV/nucleon
(ata = 1).

Fig. 1. Path-length distribution function in a flat halo diffusion
model with a few layer gas distribution described in the main text
(solid line). The dashed line shows an exponential distribution.

Fig. 2. Detailed structure at small path lengths of the same distribu-
tion function as in Figure 1.

Figures 1 and 2 show the result of calculations of path
length distributionG(x) based on20000 random particle tra-
jectories released at an observer position at the galactic mid-
plane. The distribution is normalized toG(0) = 1. The
exponential distribution with the escape lengthXe = 8.7
g/cm2 obtained with the use of equation (1) is shown for
comparison. It is evident that the actual distribution is very
close to the exponential one except for small path lengths
x < xm ∼ 0.5 g/cm2. This explains the practicality of the

leaky box model for the interpretation of data on stable nuclei
in cosmic rays.

Fig. 3. Distribution on path length in cloudy interstellar medium for
different values of the total fractionQ of cosmic ray sources inside
the clouds at fixed fractionM of the total mass of gas contained in
the clouds.

More considerable deviation from the exponential distri-
bution is possible in the models where the clumpiness of in-
terstellar gas in the form of dense clouds is taken into account
and where the distribution of cosmic ray sources is correlated
with the gas distribution (Ptuskin & Soutoul , 1990; Ptuskin
et al. , 1997; Cowsik & Wilson , 1973, the last being the
seminal work in this area). This effect is demonstrated in
Figure 3. The path length distribution was calculated in the
flat halo model with cosmic ray halo thickness2H = 2 kpc.
The two-component distributions were used for the interstel-
lar gas and the cosmic ray sources. The uniform component
with constant density occupied the intercloud space in the
galactic disk of total thickness2h = 200 pc. The multi-
ple cylindrical clouds of radiusRcl = 30 pc lined up in the
galactic disk at distancesd = 500 pc from each other. The
gas density was chosen to benH = 1 cm−3 in the intercloud
space andnH,cl = 30 cm−3 inside the clouds whereas the
corresponding source densities were varied. The accepted
diffusion mean free pass wasl = 0.3 pc. The three curves in
Figure 3 correspond to the cases when the fractionQ of all
cosmic ray sources contained in the clouds was correspon-
dently equal, considerably more, and considerably less than
the fractionM of the total interstellar gas mass contained in
the clouds. The exponential distributionG(x) was obtained
for Q = M . The deficit at small path lengths (the trunca-
tion) was observed forQ > M , and the excess at small path
lengths was observed forQ < M .

These results are in full agreement with previous analytic
work on the theory of cosmic ray diffusion and nuclear frag-
mentation in strongly inhomogeneous interstellar medium.
The possible existence of truncation in the exponential path
length distribution for galactic cosmic rays was discussed
over a long period of time (Shapiro & Silberberg , 1970;
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Garcia-Mũnozet al. , 1987; Soutoulet al. , 1990) . The dis-
cussion concerns, in particular, the relative abundance of sec-
ondary boron and sub iron elements. The increase of about
10 percent of sub iron secondaries may exist in galactic cos-
mic rays compared with the prediction based on the pure ex-
ponential path-length distribution function with the escape
length determined from the fit to the observed abundance of
boron. The truncation may occur at about(0.2...0.3)Xe. The
spallation of cosmic ray nuclei with large cross sections is
most sensitive to the behaviour of the path-length distribu-
tion at smallx. For example, a relativistic Pb nucleus has the
desruction length as short as1 g/cm2 (Waddington , 1996).

5 Conclusion

The correspondence between the Fokker-Planck equation for
particle distribution function and the stochastic differential
equation, the Ito equation, for random particle trajectories
was proven to be useful for the solution of various problems
in mathematics, physics, and economics. It was employed
in particular for studies of energetic particle acceleration and
transport in space plasmas, see Krulls & Achterberg (1994);
Fichtneret al. (1996); Zhang (1999, 2000).

In the present paper, it is shown that the technique of stochas-
tic differential equations is well adoptable to the calculation
of cosmic-ray path-length distribution in the Galaxy. The re-
markably simple Eq. (9) allows one to find the distribution
functionG(x) by calculating random trajectories of relativis-
tic particles backward from the observer location. The pre-
sented calculations with a realistic, many component, spa-
tial distribution of interstellar gas taken into account showed
that the path-length distribution is close to the exponential
one. This confirms the old theoretical result (Berezinskiet
al. , 1990) that the disk-halo diffusion model is close to the
leaky box model for the interpretation of data on abundances
of stable nuclei in cosmic rays. The calculations where the
presence of dense gas clouds was taken into account demon-
strated that a significant deviation from the exponential dis-
tribution is possible at small path-lengths in the case of a
strong correlation of gas density and cosmic ray source den-
sity inside the clouds. This is also in agreement with analytic
theory predictions.

The case with dense clouds refers to the long-discussed
question about possible truncation of exponential path-length
distribution. The experiments like the proposed HNX Mis-
sion (Binnset al. , 2001), where the elemental abundance
of cosmic ray nuclei up to actinides can be measured, would
be very informative for the determination of the exact form
of cosmic ray distribution function on path-length and for
the investigation of possible gas density - cosmic-ray source
density correlation.
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