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Cerenkov radiation of cosmic ray extensive air showers. Part 3.
Longitudinal development of showers in the energy region of
1015 ÷ 1017 eV
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Abstract.  The longitudinal development of showers in the
energy region of 1015 ÷ 1017 eV has been reconstructed by
using the lateral distribution of EAS Cherenkov light and
zenith dependence of the parameter Ns at the fixed energy.
Thereby, the adaptive method algorithm in solution of the
inverse tasks is used. Taking into account it, the absorption
path lengths of particles in a shower at a different stage of
its development have been found. This parameter can be
used in testing of the hadron interaction models at E0 > 1015

eV and the mutual calibration of all compact EAS arrays.

1   Introduction

  Cosmic rays of ultrahigh energy, interacting with the
atomic nuclei in air, generate a cascade of secondary
particles, which is called the extensive air shower (EAS).
Such a shower is accompanied by high – power coherent
electromagnetic radiation, the most efficient among which is
Cherenkov radiation generated by relativistic particles of
EAS in the optical wavelength region.. The Cherenkov
radiation generated  through out the entire journey of shower
particles in the atmosphere carries information in such a way
about its longitudinal development (Chudakov et al.., 1960).
Earlier in (Dyakonov  and Knurenko, 1990; Dyakonov et al.,
1991) we restored  the cascade curve by the method
(Dyakonov  and Knurenko , 1986) using as additional
information the measurements of  total number of the
charged particles at sea-level Ns.
 The idea of the method supposed in the present work is that
by LDF we can restore the cascade curve of the "average"
shower knowing the attenuation of the Cherenkov light flux
in different atmospheric layers. We have obtained this
information  using the method suggested by us in (Dyakonov
and Knurenko 1999).
   When considering the problem in detail, the  ill-posed test
of the type of the Fredholm integral equation of the fist kind
arises. To solve it, one has to use modern methods  for
solution of the inverse tests. Taking into account the
conditions of our experiments, we  have selected, from the
regularizing algorithms available, the adaptive method
(Kochnev, 1985). In the mathematical statement of the test
and  a priori  information available, this method suits our
problem best of all.

2    Initial equation

  Detectors usually measure the flux density  Q(R) of
Cherenkov radiation at a fixed distance R from the axis of a
shower. A set of such measurement points represents the
spatial distribution of radiation at the level of observation.
The power of a radiation source at the altitude z in the
atmosphere depends on the product of the total number of
particles N(z) by the light yield function g(R, z).  Here the R
dependence of g(R, z) reflects the fact of angular distribution
of these particles and the probability that radiation from
them comes to this distance. The initial equation can be
written in the form

                    ∞
Q(R)= ∫ A(R, z,L�z))⋅N(z)dz                                                (1)
                0

Here N(z) is the cascade curve of the development of
shower, L�z) is the transmittance of the atmosphere from the
altitude z to the level of observations, and the number of
photons emitted on a unit path length

A(R,z) = g(R, z,L�z)) ⋅ ρ(z) ,                                               (2)

where ρ(z) is the air density at the altitude z.
 The function g(R,z) depends on the power spectrum of
emitting particles and the energy threshold for Cherenkov
effect.  When an inverse test on the unknown N(z) is stated,
Eq. (1) takes the form of the Fredholm integral equation of
the first kind, which falls in the category of ill-posed inverse
tests. Such tests are usually solved by introducing some a
priori  information about a solution sought, based on
physical grounds of the problem.

3 Method of  solution

  Applying Chebyshev quadrature formula, represent Eq. (1)
as a system of linear algebraic equation:                                      
   m
 ∑ Aij⋅ N(z)j = Qi       i=1,…,n; j=1,…, m                               (3)
 j=1

where n is the total number of detectors responded; m is the
number of points at different altitudes in the atmosphere, at
which the numbers of  “cherenkov” electrons are being
reconstructed.
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    The set of equations (3) has been solved using the
adaptive method for solution of inverse testes. This method
uses the vectors of initial approximations of the unknown
Nj

(0) and their certainties σNj. as an a priori information.
Having substituted  Nj

(0) into the i-th equation of the set (3),
we obtain the prognostic value of   Qi. The difference  
∆Qi = Qi  - Qi is referred to as the discrepancy. It can be
presented as a sum:

             m
 ∆Qi = ∑ uj,                                                                         (4)
           j=0

where it is meant that u0 = ξi , and ξi   are measurement
errors.
     All terms are assumed independent random values
distributed by the normal law. Then the joint probability
density in the (m+1) - dimensional space has the form:
                       m

µ(u0,…,um) = ∏ 1/(2πσuj)⋅exp(-uj
2/2σuj

2),                             (5)
                    j=0      

 where
                                                                                                     

m

σuj
2 = (Aij ⋅ σTj)

2; σu0
2 = σQi

2;  u0 =(∆Qi  - ∑ uj),                   (6)
                                                               j=1

 σQi is the rms measurement error.
The values of uj  are chosen so that the probability density is
maximal. This can be achieved when the goal function                                                                                              
                                                            m

ν(u1,…,um) = u0
2/σQi

2 + ∑ uj
2/σuj

2                                         (7)
                                                        j=1

takes its minimum.
   It is easy to see that the goal function is similar to the
Tikhonov minimizing functional. If it is accepted that
σQi = σQ,  σuj = σu and  α = σQ

2/σu
2  then we have                                                                            

                                                             m                        m

min ν(u1,…,um) = (∆Qi - ∑ uj)
2 + α⋅∑ uj

2                             (8)
                                     j=1                     j=1

What exactly corresponds to the Tikhonov reqularizing
functional. Having differentiated Eq. (8) with respect to
every unknown parameter, we obtain a set of n  equations
for m unknowns. This set has the following solution:          
                                                         m

 uj = ∆Qi⋅(σuj
2/(σQi

2 + ∑ σuj
2))                                             (9)                   

                                                     j=1

Upon designating the second cofactor in Eq. (9) as βij and
introducing the number of the next refining step k, we obtain
the recursion expression

Nj
(k+1) = Nj

(k)+ ∆Qi
(k+1)⋅βij /Aij                                             (10)

    As the number of iteration increases, the r.m.s error of the
obtained solution decreases:

 (σuj
2)k+1 = (σuj

2)k⋅(1-βij )                                                    (11)

This follows from the fact that the parameter βij varies from
0 to  1, and the r.m.s. error decreases, thus leading  to the
needed refinement of the solution sought.

4 Experimental data and  discussion

The problem presented by Eq. (1) is solved using the initial
approximation Nj

(0) = const  (the most neutral assumption
on the sought solution) and vectors of certainties σNj .
Besides, in Eq. (3) the error in the right – hand side can be
written as

σQi
2 = {0.04+n2*(∆R/R)2}⋅Qi

2 ,                                         (12)

where ∆R is the error in determination of the shower axis;
the factor equal to 0.04 is due to the absolute calibration of
radiation detectors, and n are the above – determined
exponents at the exponential approximation of Q(R).
   The results obtained are shown in Fig. 2. In Fig.3 the
calculations by the QGSJET model are given (Knurenko et
al., 1999).
We constructed experimental curves of the longitudinal  EAS
development  for ∆E0  = 1015 ÷ 1017 eV from Xmax to sea
level using method (Dyakonov and Knurenko, 1999) and by the
reconstruction  method of the cascade curve tail using
dependences Ns ≈  f(Q(400))  in the region of zenith angles
∆θ = 0 ÷ 50°.  The transition  to the  dependence Ns - f(E0)
was carried out by the formula

 E0 = (5.2±1.1)⋅1016⋅Q(100)0.96 ± 0.02                                ( 13 )

and to the dependence  N(x) - f(Xo⋅ secθ) - by the section
method of curves in  Fig.1 for given fixed energies.  To
compare experimental and theoretical results the  points
were  reduced  to the single energy and the atmosphere
depth.  Fig. 2  demonstrates the cascade curves of  EAS  for
the depths range of  1020 -1600 g/cm2 and the curves
reduced by the Cherenkov   light LDF shape from the
maximum to sea level. The calculated curves  are shown by
 dotted lines on Fig.3. From Fig.3 the difference between
experimental  and  calculated curves with the increase  of the
atmosphere depth is seen: the experimental curve is  more
sloping. We analyze absorption path lengths of charged
particles  for different  parts by X(g/cm2): ∆X1(1020 - 1300),
∆X2(1300 ÷1600). The results of  analysis are shown in
Fig.4. It is seen from Fig.3 and Fig.4 that there is a
dependence of the absorption path length of particles λ on Ns

and secθ.  It is not in agreement with the calculation by the
QGSJET and SIBYLL models. It may occur when the
fraction of  the second particles in the models and in
experiment is different. For example, in calculations by the
QGSJET and  SIBYLL models the fraction of  the second
particles is equal to 363±98 and 263±89. In the experiment it
is probably 396±110. It is not improbable that such a
difference in the fraction of  the second particles is
connected with either the mass composition of primary
particles or with the mass of the leading particle forming the
consequent subcascades.
   The parameter λ can be estimated by a zenith-angular
distribution of showers at the fixed Ns and the known
spectrum by the number of particles  (Afanasiev and Knurenko,
1994). Then the comparison  of our result with data obtained
at other compact arrays can serve to the aims of the mutual
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calibration and more precise definition of physical results.

Fig.1. Shower size Ns  versus  the density of the Cherenkov light

flux at a distance of 100 m from the shower core.

Fig.2.  The experimental cascade curves of development of EAS

for E0 = 1,7⋅1015; 3,0⋅1015; 5,8⋅1015; 1,1⋅1016; 2,7⋅1016; 5,2⋅1016;

1,0⋅1017 eV.

Fig.3. The experimental cascade curves for E0 ≈ 1015; 1016 and

1017 eV. Dotted lines are calculations by the QGSJET model.

Fig.4.  Dependence of the absorption path length of  charged

particles λabs. on a shower size. (---) - calculations by the SIBYLL

model and (....) - calculations by the QGSJET model.
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