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Abstract. A new calibration method, applicable to multi-
detector telescopes, is presented. This method is based on
the comparison between experimental data and the ones
obtained from Monte-Carlo simulation. The method just
needs a accurate knowledgment of the detector spectrum.
To test the method, data obtained in GANIL accelerator, are
used. Obtained results are presented and the method
accuracy is concluded.

1  Introduction

The calibration of a particle detector requires to find two
calibration parameters (CP) relating the energy signal ∆E
released by a particle with the ADC channel number N
obtained at the output,

β+α=∆ NE (1)

where α is the slope and β is the zero shift of the detector-
amplifier-ADC chain. Here is supposed that the detector
system is linear, that is, non-linearity in the electronics and
pulse-height defect are neglected. For calibration
procedures that considers non-linearities see Mulgin et al.
(1997) and Tabacura et al (1999).

The complete calibration of a telescope composed of n
detectors requires finding 2n parameter αi and βi. For this
purpose several calibration methods are widely used. For
telescopes intended to detect light ions, individual
calibration of every single detector using radiactive alpha
sources can provide enough precision, if the maximum
energy to be released in every detector is not much higher
than ∼ 5-8 MeV (we return to this point on next section).

For higher energy ranges or heavier ions, calibration at
accelerator is usually performed. In this case, there are two
possibilities to know the energies of the ions detected. One
is to align the telescope with a low intensity beam that

contains ions of different charges but a well-defined
rigidity, selected magnetically. The beam intensity must be
kept low enough to avoid unacceptable damage in the
detector materials. The other one is to detect beam ions
scattered elastically from a target, whose energy can be
easily known from the collision kinematics. In this second
case, the elastic events from a beam-target pair provide
only one energy peak for every detector, that can be
inssuficient. Thus, several targets or a beam with several
charges must be used. Besides, if the collision chamber is
small, the solid angle covered by the telescope can be large,
and the elastic peak detected in each detector can become
wide because of kinematical effects.

Even if the energy of the events detected is not known, a
calibration can be made through the comparison between
the results of the calibration experiment and a Monte Carlo
simulation of the same experiment (Matsinu et al., 1996;
Fang et al., 1999). Indeed, this method requires a very good
knowledge of the stopping powers of the different ions
detected on the detector material, that is not always known
with enough precision. In any case, a beam with very well
defined energy is required.

In this work we propose a new calibration method that
does not require a precise knowledge of stopping powers
for the ions detected, neither a high precision in the beam
energy or in the dispersion angle in the reaction chamber.

2  Calibration method

The main idea of the calibration method is to superpose on
a ∆Ei - ∆Ei+1 map two different data sets: experimental data
from accelerator and data from a simulation of the same
calibration experiment. In order to allow the representation
of both data sets in the same map, the experimental data are
converted from channels to MeV leaving the CP's as free
parameters. Then a grid is built on this map and every event
(experimental or simulated) is associated with the
corresponding cell in the grid. The similarity between both
bidimensional data distributions is greater as the CP's
approach their correct values, and this is reflected in the  Correspondence to: C. Martín (martin@grc86.fis.alcala.es)
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number of filled cells (NFC from now on) in the map. For
CP values close to the correct ones, both distributions are
nearly overlapping, and the NFC exhibit a minimum.

We must emphasise that the number of events
associated to a cell is not taken into account to consider
filled that cell, while being greater than zero. Although this
procedure could seem strange from a statistical point of
view, it has two advantages: a) is insensitive to small
differences in shape and intensity between the energy
spectra of simulated and experimental data; b) is much
faster than a similar procedure counting the population of
every cell in the grid. Nevertheless, if the experimental data
set has a high noise level, the condition to consider filled a
cell can be changed from greater than zero to greater than
a threshold defined by the noise level.

Although based on a conceptually clear idea, the
implementation of this calibration method meets several
difficulties of numerical nature that we pass to expose.
1) Several local minima are observed on a NFC versus CP
plot. This happens for CP values leading to the
superposition of experimental and simulated ∆E-E lines
corresponding to different elements. However, as the
geometrical features of these lines (curvature, distance
between neighbour lines, thickness) are different for
different elements (and, on a lesser degree, for different
isotopes), the similarity is greater and the NFC smaller
when the overlapping lines correspond to the same
elements. Therefore, the lower local minimum gives
without ambiguity the correct CP values.
2) How to choose the cell size? To answer this question,
two criteria that point to opposite directions have to be
taken into account. On one side, the smaller cell size, the
longer computation time. On the other side, the smaller cell
size, the best can be compared experimental and simulated
data, and so the best resolution can be reached on the CP's.
The smaller scales on a ∆E-E map are the thicknesses of
isotopic lines, if isotopes are resolved, or elemental lines, if
they are not. This suggests choosing the cell thickness of
the same order as these features.
3) For the simultaneous application of this method to a
couple of successive uncalibrated detectors (let say
detectors 1 and 2), the minimisation of the NFC must be
performed in the four-dimensional space of the parameters
α1, β1, α2 and β2. This is a very time consuming task, not
forgetting the fact that the discrimination between local
minima becomes more difficult as the dimension of
parametric space increases. To overcome this problem, a
numerical technique based on the theoretical expression for
the stopping power has been developed which stablishes a
linear relation between the CP's of two successive detectors.
With this relation, the minimisation of the NFC can be
performed on two (let say α1 and β1), instead of four (α1,
β1, α2 and β2) parameters. Although integrated as a part of
the calibration method, this technique is essentially
independent, and could be used by a different calibration
method or for different purposes. Let then explain it with
some detail before showing results of the calibration
method applied to a solid-state detector telescope.

2.1  Technique to reduce the number of  free CP's.

For the sake of simplicity, consider a particle telescope
whose detectors are made from the same material (the
extension of the technique to heterogeneous detectors is
quite easy). Then the energy losses of an energetic ion
passing through the telescope depend only on its charge,
mass and energy. In the energy region from some MeV/amu
to some hundreds of MeV/amu, the stopping power can be
expressed approximately as:
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where Z, A, and E are the ion nuclear charge, mass and
kinetic energy, respectively, and C is a constant for a given
detector material. Below the GeV region, the relativistic
corrections to this expression can be included
approximately on f(E/A). It is convenient to point out that
the function f(E/A) varies very slowly compared with the
factor 1/E.

The energy ∆Ei released on detector i can be obtained
integrating the stopping power along the detector thickness
Xi. Let suppose a particle whose energy is high enough to
traverse detectors i and i+1 with small losses compared
with that energy. In this case the energy losses can be well
approximated by
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where Ei is the energy at the entrance of the detector and fi ≡
f(Ei/A). Then we can stablish the following relation between
the energy losses on detectors i and i+1:
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In the limit of high incident energies, the energy losses
are small enough to consider Ei and Ei+1 essentially equal,
and the same can be said about fi and fi+1. Then, for high
enough incident energies the energy losses on two
successive detectors are proportional (on the opposite to the
case when the particle crosses detector i and stops on
detector i+1, when both energy losses are anticorrelated):
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These energy signals are recorded at the output of the
electronics as channel numbers Ni, Ni+1. Then, plotting on a
Ni - Ni+1 map the events corresponding to particles that
traverse both detectors (and consequently that release on
detector i+2 a signal higher than a threshold), a region of
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points that tend to align along a straight asymptote is
obtained. Let the equation of this asymptote be

1i,i1i1i,ii BNAN +++ +⋅= (5)

Indeed this equation, expressed in channels, must be the
same as (4), whose units are energy units (MeV, usually).
That way, from experimental data selected by a threshold
on detector i+2 as the only condition, we can find a version
in channels of relation (4). The numerical method to find
the coefficients Ai,i+1 and Bi,i+1 of the asymptote from the
selected (Ni,Ni+1) points is explained with some detail in the
appendix at the end of this paper.

Then we can use CP's (yet as unknowns) to express
linear equations (4) and (5) in the same units and equate
coefficients. That leads to the following relations:
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For each detector pair (i,i+1), these relations reduce by
two the number of free CP's. In fact, this reduction
technique could be used to reduce the number of  free CP's
of a n detectors telescope from 2n to just 2, provided an
enough number of experimental events of enough energy. A
so big reduction is not always possible, however, because
the straight asymptotes on all the (Ni,Ni+1) maps are not
always clearly defined, depending on the spectra of
experimental data. But for nearly any reasonably designed
calibration experiment on accelerator, this technique can be
applied without problems to, at very least, the first two
detectors. This can serve as a seed to apply the calibration
method described above repeatedly, but performing the
minimisation of the NFC on two CP's.

As an additional use of this technique, a telescope that
includes one pre-calibrated detector can be completely
calibrated using (6) repeatedly with the CP's of the pre-
calibrated detector as seed.

3  Application to experimental data

In this section we apply the method described in the
previous section to the calibration of a heavy-ion telescope
with calibration data. This telescope is the sensitive part of
the PESCA instrument (Peral et al., 1997), intended to
measure cosmic ions in the payload of the Russian
spacecraft PHOTON. The calibration experiment was
performed in GANIL in April 1997. At that time, the
telescope had four silicon surface barrier detectors whose
thickness was chosen to detect Fe ions with energies
between 3.5 and 50 MeV/uma, with the fourth detector
acting as veto detector. The events registered correspond to
interaction fragments of the reaction between 52 MeV/uma
58Ni ions with 30 µm thick 197Au target, with the telescope

placed at 45 cm from the target and a laboratory dispersion
angle of 7º.
In figure 1 we show the lost energy spectra in channels. It
has been chosen because the raw data show a good
isotopical separation.

Fig. 1. Lost energy spectra ∆E-E in channels.

We have simulated the response of the telescope by means
of the GEANT program. This program allows to simulate
the response of any experimental device in the presence of a
flux of charged energetic particles.  We have simulated a
cualitatively similar response to our device generating
stable isotopes from hydrogen to iron with energies between
1 and 50 MeV/uma. The ∆E-E spectra corresponding to the
GEANT simulation is shown on figure 2.

Fig. 2. Lost energy spectra ∆E-E simulated in MeV.

Once we have the two sets of spectra, we are be able to
apply our calibration method. We have used a 200×200 cell
grid for both (∆E1,∆E2) and (∆E2,∆E3) mapps. First, the
(∆E1,∆E2) simulation values are projected onto the grid and
then the (Ni,Ni+1) experimental data are projected too giving
an initial value to the β1 parameter (β1=0 MeV) and
successively changing the α1 parameter in the [0, 0.02]
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range with step ∆α1=10-4 MeV/channel. The number of
“filled cells” vs α1 is shown in figure 3.
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Fig. 3. Number of “filled cells” vs  α1

The graphic shows a inceasing tendence in the number
of filled cells followed by a fluctuating behaviour, whose
first minimum gives the correct  value for the parameter α1.
Now, this parameter α1 is used as initial value to
determinate  the offset parameter β1 using the same process
as before, making a succesive change of parameter β1 in the
[-2, 2] range with step ∆β1=0.01 MeV. The number of
“filled cells” vs β1 is shown in figure 4.

-2 -1 0 1 2

6650

6700

6750

6800

6850

-2 -1 0 1 2

6650

6700

6750

6800

6850

β
1

Fig. 4. Number of “filled cells” vs β1.

With these calculated parameters α1 and β1, we use a
recurrent process till the convergence of values is found.

As we said, we only need to know two parameters, the
thickness of the detectors (Xi,Xi+1) and the coefficients Ai,i+1

and Bi,i+1 of the straight asymptote from the (Ni,Ni+1) points
for the calibration of all detectors. If we make use of the
equations in formulae (6), that leads to the following
relations:
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Then we substitute the CP’s of the first detector (α1 and β1)
and obtain  α2 and β2 . The calibration of the third chain can

be obtained using the previous method calculating the
ecuation of the straight asymptote from the (N2,N3) points or
we can apply the method of successive CP’s variation since
now we know the energy-channel relation for the second
chain. In fig. 5 accelerator data converted to energies with
the previous calculated relations together with simulation
data are shown.

Fig. 5. Comparison between accelerator data converted and
simulated data.

5 Conclusions

A new calibration in energies method has been
developed that allow a effective conversion from ADC
channels into energy values based on the comparation of
experiment data with Monte Carlo simulation data of the
same experiment. One of the acquisition registered in the
GANIL accelerator with the PESCA instrument has been
selected to apply this calibration method. This method is
easily applied to any multimodular telescope and will give
information about the gains we have to fix in the
amplification chains. One of the main advantages of this
method is that we obtain similar results to other methods
using no references points.
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