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Search for optimum technique of measuring high energy (1012 –
1016 eV) GCR which can provide maximum efficiency of the
instrument at its minimum mass.
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Abstract . Different techniques of measuring the energy of
the primary particle, by recording the total  energy of
gamma-quants, generated in a target with small atomic
weight. It is shown, that these techniques give instrument
efficiency per unit mass, which is ~2 times smaller, than
that of thick ionization calorimeter with spherically
symmetric characteristics.
________________________________________________

1  Introduction

Any instrument, intended for measuring GCR particles,
should satisfy two major requirements: determine the kind
of the particle (measure its charge Z ) and its energy E .
  There are many techniques for measuring Z . Here there
are many options, and we will not discuss them.
  The situation with measuring E  is much more
complicated. Practically only two methods are used: a thick
ionization calorimeter (IC) and a technique which combines
a target made of light material with a detector for recording
the energy of γ-quants, generated in the target by the
primary particle. There is now a stable opinion, that in
order to achieve high efficiency of an instrument (which is
necessary for recording high energy particles the fluxes of
which are small) the technique employing  a light target
+∑ γE detector  has obvious advantages over a thick (and,
therefore, heavy) ionisation calorimeter (Burnett et al.,
1983; Seo et al., 1997; Aleksandrov et al., 1998). Below,
we will show that this opinion is erroneous if a certain type
of IC is used. The typical configuration for the target +
∑ γE  detector is the following:  a  target  layer with the

thickness of tX  g/cm2 made of a material with small
atomic weight and a relatively small range for inelastic

interactions of primary particles tλ  and a ∑ γE  detector
located under the target and made from a
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material with large Z . We will consider a detector, made
of  lead and the target made from graphite.
  The minimum thickness of the lead layer in the
∑ γE detector should satisfy the condition

)65(max ÷+= tX Pb  cascade lengths; maxt  is the depth (in
cascade lengths), where the number of particles in the
cascade reaches maximum. The additional 5÷6 cascade
lengths are necessary to assert with confidence, that the
measured maximum number of particles corresponds to the
maximum number of particles in the cascade, since only
this determines the cascade energy.  If the intention is to
measure ∑ γE =1013-1015 eV, then for lead

=PbX 120÷150 g/cm2. In order for a particle to be
recorded, it should interact inside the target. The probability
of the is )/exp(1 trec XP λ−−= .  In this approximation

(which differs from the exact expression by 10%) X  is
the mean amount of matter, travelled by a particle in the
target. We will call the expression recPΓ  the efficiency of
the instrument, where Γ  is the geometry factor . For a
given instrument mass, there is only one parameter, which
can be changed arbitrarily, -it is the thickness of the target

tX . Decreasing tX , we increase Γ , but decrease recP .
Therefore the instrument efficiency has a maximum at a
certain value of tX .

  We will introduce the parameter MPrec /Γ=κ , which
describes the efficiency of  using  the  mass,  for achieving
maximum efficiency. Let us determine the maximum
values of the κ  parameter for the different configurations
of the instrument, employing the target + ∑ γE detector
technique.
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2  Flat structures (Fig 1a, 1b).

For a flat structure and isotropic distribution of primary
particles :    [ ])/2exp(1 tt
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Fig. 1. The ∑ γE  detector -1 , and  the target -2.

If we introduce the variable yX tt =λ/  and note, that,

BXX PbPb
t

Pb
tPb 44.2// == λ
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λ

λ  where =B 0.62÷0.77

(we used the following values Pbλ =195g/cm2, tλ =80

g/cm2, PbX =120÷150 g/cm2). Keeping this in mind, we

obtain )1()44.2(1093.3 212 yeBy −−− −+⋅=κ . The
maximum values are:  =maxκ 1.01⋅10-2 cm2 sr/g=1.01 m2

sr/ton at  =y 0.675 ( =B 0.62) =maxκ 0.90⋅10-2 cm2

sr/g=0.9 m2 sr/ton at  =y 0.735 ( =B 0.77).

  The ‘b’ version is also flat, but the  ∑ γE detector is
surrounded by the target from both sides, and the detector
plane is located vertically. Due to this the instrument
records the particles, coming from the lower hemisphere,
not shaded by the Earth, increasing Γ  by a factor of 1.5.
  The expression for κ  has the form:

)1()44.2(109.5 12 yeBy −−− −+⋅=κ , where

ttXy λ/2= . Sometimes, an opinion is expressed, that
in a flat structure the thickness of the lead ∑ γE detector
and the target can be decreased, and due to this the detector

area S , and correspondingly the geometry factor  can be
increased.
  Since the primary particles fall on the instrument
isotropically, there is always a fraction of particles, which
will travel through a sufficient amount of matter in the
target and ∑ γE detector, in order to be recorded. Though

this approach undoubtedly increases S , does it increase
the efficiency?

Let us assume, that we decrease the thickness of the

∑ γE detector to the value of PbPb XX <∗ . In this case the

particles cascades arriving at the ∑ γE detector at the

angle of 0θθ < , where PbPb XX /cos 0
∗=θ , will not

develop to their maximum number of particles, and
therefore, will not be used in the measurements. Therefore,
the particles will be recorded only when their falling angles
on the detector are within the range from  0θ  to 90°. For
these particles the geometry factor is equal to

0
2cos θπS=Γ  and )/( ∗+= Pbt XXMS . The mean

amount of matter, traveled in the target will be

0cos/2 θtX  and )cos2exp(1 0θλ ttrec XP −−= .

Introducing all these values in to the expression for the κ
parameter and substituting yX tt =0cos/ θλ , we obtain

000
21 coscos)1()44.2( θκθ

λ
πκ =−+= −− y

t

eBy , where

0κ  is the value at o00 =θ . As we can see a decrease of

the target and ∑ γE detector thickness only decreases the
instrument efficiency.

3  Spherical structures (Fig 2).

Let us consider the same particle recording technique :
target and ∑ γE detector but in a ‘spherical’ configuration,

i.e. when particles are recorded within π4  (see Fig.2).
In this configuration the ∑ γE detector with thickness of

2/PbX  is a surface with spherical or cubic form. The
interaction of the primary particle occurs in the target, and
the generated gamma-quants create an electromagnetic
cascade in two parts of the ∑ γE detector, i.e. the cascade

travels the total thickness of the lead PbX . The geometry
factor of such an instrument is determined by the geometry

factor of the detector ∑ γE , and the recording

probability recP  is determined by the mean amount of
matter in the target over the unit area of the

∑ γE detector.

3.1 Spherical target + spherical  ∑ γE  detector. (Fig.2a).

Let the ∑ γE detector radius be r  cm. Then
the geometry factor with account for shading by the Earth
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Fig.2. The ∑ γE  detector -1 , and  the target -2.

( =H 500 km) is equal to .9 2rπ=Γ  The ∑ γE  detector

mass is equal to 2/4 2
PbXr ⋅π  g and the mean

amount of target matter per unit detector surface

PbPb XrMrXrMX 5.04/4/)2( 222 −=−= πππ .

Thus, )]4/exp()2/exp(1[9 22
ttPbrec rMXrP λπλπ −⋅−=Γ .

If, as before, we write down BX tPb 44.2/ =λ  (where

)77.062.0/ ÷== PbPbXB λ , and denote

trMy λπ 24/= , then we obtain:
122.12122.1 )1(1081.2)1)(/25.2( −−−−− −⋅=−=Γ= yeeyee

M
P yByB

t
rec λκ

This expression has a maximum value =maxκ 0.01 cm2

sr/g=1.0 m2 sr/ton at 78.1=y   ( =B 0.62), =maxκ 0.92

m2 sr/ton at 06.2=y   ( =B 0.77).

3.2. a cubic ∑ γE detector and a spherical (b) or cubic (c)
target.

  If the side of the  ∑ γE detector cube is a  cm, then the

geometry factor is 24 aπ=Γ . The mass of the target is

PbPb XaMXaM 22 32/6 −=−  and the mean amount

of matter, per unit ∑ γE detector area is equal to

PbXaMX 5.06/ 2 −= .   Thus,
122.12122.1 )1(1062.2)1(3/2/ −−−−− −⋅=−=Γ yeeyeeMP yByB

trec λπ
  As in the previous case, the maximum values are reached
at  78.1=y   ( =B 0.62) and  06.2=y   ( =B 0.77).

These  values give =maxκ 0.94 m2 sr/ton and 0.86 m2

sr/ton, respectively.

4. Cubic ∑ γE detector with spherical symmetry

 Finally we will consider a configuration, where the

∑ γE detector is a cube with side a  made of a material

with the density of ρ  g/cm3, with spherical symmetry of
characteristics. The upper side of the cube and the four side
surfaces are surrounded by a light target  with thickness tX
g/cm2 (Fig.3.)

Fig.3 The ∑ γE  detector -1 , and  the target-2.

The sum of the  target mass tM  and the ∑ γE detector

mass dM  is fixed, i.e. .constMMM dt ==+ In this

case  only the target thickness tX  and the size of the ∑ γE

detector are varied, i.e.  the a  value, in such a way, so as
to achieve  the maximum value of the instrument
efficiency. As before, )6/exp(1 2

ttrec aMP λ−−= . The
results of this calculation, made for ρ =6 and and 7 g/cm3

for three different values of the instrument mass =M 3, 5,
and 9 tons are shown by dashed lines in Fig.4.

Fig.4. The κ -parameter versus mass .
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5   Discussion

The final result is the following: in all the configurations
(except one) instrument, employing the concept of a light
target +∑ γE detector does not permit to achieve
efficiency, exceeding 1 m2sr per 1 ton of the instrument
mass. The exception is the flat version , where the detector
plane is located vertically.
  Finally, we will consider the capabilities of a thick
ionization calorimeter of cubic form with  spherically
symmetrical characteristics (Grigorov et al., 1997).  If the
side of the cube is a  cm and the absorber in the IC ρ
g/cm3 , then the instrument mass is 3aM ρ= , and the

geometry factor 24 aπ=Γ . Since in this case 1≅recP ,

then the efficiency Γ=Γ recP  and
3/23/1/4/ ρπκ MM =Γ= .

  The dependence of κ was calculated for different ρ =4.5;
5; 6; 7 g/cm3 and =M 3,5 and 9 tons. The results are
shown in Fig.4. (curves 1-4) The same figure shows the
previous results (curve 5 corresponds to Fig.1; curves 6÷8
to Fig.2.; curves 9 and 10 to Fig.3.). It can be seen from
Fig.4., that the IC has  efficiency per unit mass, which
exceeds by a factor of 2-3 that of the target
+∑ γE detector configuration.
  In order to avoid misunderstandings, it should be
mentioned, that the advantage in κ  for the ionization
calorimeter is only achieved when the IC has spherical
symmetry of the parameters, i.e. records with equal
efficiency particles, arriving from arbitrary directions
within 4π . For regular IC with restricted angular aperture
the κ  parameter is smaller than 0.1 m2sr/ton.
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