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Abstract. It is show that in the weak interactions the con-
nected states cannot exist and then the weak interactions can-
not generate masses and the equation for Green’s function of
the weak interacting fermions (neutrinos) in the matter coin-
cides with the equation for Green’s function of fermions in
vacuum. And in the result we come to a conclusion: the
mechanism of resonance enhancement of neutrino oscilla-
tions in matter (i.e. MSW effect) cannot exist.

1 Introduction

In the strong and electromagnetic interactions the left-handed
and right-handed components of spinors participate in a sym-
metric manner. In contrast to these interactions only the
left-handed components of spinors participate in the weak
interactions. This is a distinctive feature of the weak inter-
actions. In three different approaches: by using mass La-
grangian [1, 2], by using the Dirac equation [3, 2], and using
the operator formalism [4], I discussed the problem of the
mass generation in the standard weak interactions. The result
was: the standard weak interaction cannot generate masses of
fermions since the right-handed components of fermions do
not participate in these interactions. Then using this result
in works [4] it has been shown that the effect of resonance
enhancement of neutrino oscillations in matter cannot exist.
At present there is a number of papers published (see [5]
and references there) where by using the Green’s function
method it is shown that the weak interactions can generate
the resonance enhancement of neutrino oscillations in mat-
ter (it means that the weak interaction can generate masses).
This result is a consequence of using the weak interaction
termHint

µ = Vµ
1
2 (1− γ5) in an incorrect manner, and in the

result they have obtained that the right-handed components
of the fermions participate in the weak interactions.

Now let us come to a common consideration and then con-
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sider concrete examples and consequences of the distinctive
feature of the weak interactions.

2 Common Consideration Consequences of Distinctive
Feature of Weak Interactions

In the Quantum theory the wave functions form a full and
orthonormalized functional space. For this reason we can
use the equation on eigenfunctions and eigenvalues

ÊΨ(...) = F (...)Ψ(...) = 0, (1)

and find the eigenenergiesEn and eigenfunctionsΨn to de-
termine the physical characteristics of the considered sys-
tems [6, 7] (or models). In the Quantum theory the observed
values are the average value of operators

En = (Ψn, ÊΨn). (2)

Indeed, since the wave functions create a full and orthonor-
malized space, the average values of operators coincide with
the eigenvalues of operators. This situation takes place in the
case of strong and electromagnetic interactions and in con-
crete objects which appear from these interactions. It takes
place since the wave functions and their conjunction func-
tion exist in this case. An absolutely another situation takes
place in the case of the weak interactions. In these interac-
tions only the left-handed components of the wave function
(wave vector) (i.e. the left-handed components of spinors)
participate in these interactions. In the weak interaction the
P -symmetry is violated. And what is more in the theory for
his γ5 invariance, it is more suitable to use the Dirac [8] or
Veil [9] but not the Shr̈odinger type of equations. Naturally,
the following question arises: To which consequences does
this distinctive feature of the weak interactions lead? Also as
in the strong and electromagnetic interactions in the weak in-
teractions we can use the perturbative theory but in this case
propagators must be propagators of free particles (without
renormalization).
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Let Ψ̄L,ΨL, Ψ̄R,ΨR-be wave functions (wave vectors)
of spinor particles. Since we consider the weak interac-
tions where the left-handed components of spinors partici-
pate, then

Ψ̄R = ΨR ≡ 0, Ψ̄L = 1/2Ψ̄(1+γ5),ΨL = 1/2(1−γ5)Ψ.
(3)

If B̂ is an operator of the weak interactions, then the mean
value of this operator (the observed value) is

B̂ΨL = BΨL, B̄ = (Ψ̄, B̂ΨL) = B(Ψ̄R,ΨL) = 0.
(4, 5)

It is interesting to see: which values are zero in the weak
interactions?

Now consider the problem of eigenstates and eigenvalues
in the weak interactions. Let̂F be an operator and we di-
vide it into two parts. The first part̂A characterizes the free
particle, and the second part̂B is responsible for the weak
interaction, then

F̂ = Â+ B̂, F̂Ψ = ÂΨ + B̂Ψ, (6)

and the mean value of̂F is

(Ψ̄, F̂Ψ) = (Ψ̄, ÂΨ) + (Ψ̄R, B̂ΨL) + (Ψ̄L, B̂ΨR) =

(Ψ̄, ÂΨ) + (Ψ̄R ≡ 0)(Ψ̄R, B̂ΨL)+

(ΨR ≡ 0)(Ψ̄L, B̂ΨR) = (Ψ̄, ÂΨ). (7)

The obtained result means that in the weak interactions there
cannot arise the connected states in contrast to the strong and
electromagnetic interactions. Besides, the average value of
the polarization operators is equal to zero, i.e. the polariza-
tion of the matter is absent. In the same way we can show
that the equation for renormcharge for the weak interaction
is equivalent to the equation for the free charge, i.e. renorm-
chargeQ2(t) in the weak interactions [10] (wheret is a trans-
fer momentum squared) does not change andQ2(t) = const
in contrast to renormchargese2(t), g2(t) of the electromag-
netic and strong interactions [11] (it is necessary to remark
that the neutral current of the weak interactions includes a
left-right symmetrical part which is renormalized). Let us
consider the equation for Green’s function of fermions tak-
ing into account the standard weak interactions.

3 Equation for Green’s Function in Weak Interactions

The Green’s function method is frequently used for tak-
ing into account effects of electromagnetic interactions and
strong interactions (chromodynamics) [12]. The equation for
Green’s function has the following form:

[γµ(i∂µ − Vµ)−M ]G(x, y) = δ4(x− y), (8)

whereVµ characterizes the electromagnetic or strong inter-
actions and

iG(x, y) =< TΨ(x)Ψ̄(y) >o .

Usually the equation for Green’s function for fermion (neu-
trino) with weak interactions [5] is taken in the following
form:

[γµ(i∂µ − Vµ)−M ]G(x, y) = δ4(x− y), (9)

whereVµ is Vµ = Vµ
1
2 (1− γ5) = VµPL .

It is supposed that the termVµ in Eq.(9) reproduces the
distinctive feature of the weak interactions. If we directly use
the distinctive feature of these interactions, then the equation
for Green’s function must be rewritten in the form

[γµ(i∂µ−Vµ
[

ΨR = 0
Ψ̄R = 0

]
)−M ]G(x, y) = δ4(x−y). (10)

Then the interaction term in Eq.(10) is

Vµ

[
ΨR = 0
Ψ̄R = 0

]
T (ΨLΨ̄R) = T (ΨLΨ̄R(Ψ̄R = 0)+

(ΨR = 0)ΨRΨ̄L) = Vµ0 ≡ 0, (11)

and then Eq.(10) is transformed in the following equation:

[γµ(i∂µ)−M ]G(x, y) = δ4(x− y), (12)

which coincides with the equation for free Green’s function
(i.e. equation without interactions). So, we see that the equa-
tion for Green’s function with weak interactions (in matter)
coincides with the equation for Green’s function in vacuum.

4 Impossibility to Realize the Mechanism of Resonance
Enhancement of Neutrino Oscillations in Matter

In the previous part we have obtained that the equation for
Green’s function of fermions with weak interactions has the
form (13). It is a consequence of the fact that the right-
handed components of fermions (neutrinos) do not partici-
pate in the weak interactions. It means that the weak interac-
tion cannot generate masses (see also works [1-4]) and, cor-
respondingly, the weak interactions do not give a deposit to
effective masses of fermions (neutrinos) therefore, the mix-
ing angle cannot be changed in weak interactions (in matter)
and it coincides with the mixing angle in vacuum.

The two neutrino (a, b) mixing angle in vacuum is given
by the expression [13]

sin22θ = (2mνaνb)
2/(mνa −mνb)

2 + (2mνaνb)
2, (13)

and this mixing angleθm in the matter is

sin22θm = (2mνaνb)
2/(m′νa −m

′
νb

)2 + (2mνaνb)
2, (14)

wheremνa ,mνb ,mνaνb are masses of neutrinosa, b, non-
diagonal mass term, andm′νa ,m

′
νa -effective masses of the

same neutrinos in matter. Since the masses of neutrinosa, b
in vacuum and in the matterm′νa = mνa m′νb = mνb

are equal for the distinctive feature of the weak interactions,
then the mixing angles in vacuumsin22θ and in the matter
sin22θm coincides. Hence, the mechanism of the resonance
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enhancement of neutrino oscillations in the matter (MSW ef-
fect) cannot exist.

The problem of the resonance enhancement of neutrino
oscillations in the matter can be solved by another approach.
Namely, while neutrino passing through the matter there can
arise a polarization of the matter [15]. Ifε is the operator for
polarization energy of matter by neutrinos, then the average
value is

ε̄ = (ψ̄R, ε̂ΨL) = ε(Ψ̄R ≡ 0)(ΨR,ΨL) = 0. (15)

We see that the Wolfenstein’s equation for (real) neutrino
in the matter coincides with the equation for free neutrinos,
then no resonance enhancement of neutrino oscillations in
the matter appears.

In conclusion I would like to stress that in the experimental
data from [16] there is no visible change in the spectrum of
theB8 Sun neutrinos. The measured spectrum of neutrinos
lies lower than the computed spectrum of theB8 neutrinos
[17]. In the case of realization of the resonance enhancement
mechanism this spectrum must be distorted. Also, the day-
night effect on the neutrinos regeneration in bulk of the Earth
is preserved within the mistakes [16], i.e. it is not observed.
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